4078
D. X. Hu et al. / Tetrahedron Letters 53 (2012) 4077–4079
(nine steps, longest linear, 15% yield overall). Notably, only two
chromatography steps were necessary in the entire sequence
beginning from -valine and no precipitation from reaction solu-
L
tion was observed during the reaction sequence. Our efforts to
harness this sequence using flow technology and biological inves-
tigations on the natural product will be disclosed in due course.
Acknowledgments
We thank the BP Endowment (to S.V.L.) for financial support of
this work. D.X.H. thanks the Winston Churchill Foundation for a
Churchill Scholarship, P.K. thanks Georganics Ltd, and M.B. thanks
the Industrieclub Düsseldorf for a grant.
Supplementary data
Supplementary data (detailed experimental procedures, com-
pound characterization, and original 1H and 13C NMR spectra of
all compounds) associated with this article can be found, in the on-
Scheme 1. Initial coupling partners 2 and 3 failed to provide product 4 due to rapid
formation of oxazalonium cation 5; anhydride 6 resulted from a similar interaction
with the Boc-protecting group in acid 8.
References and notes
1. (a) Shemyakin, M. M.; Ovchinnikov, Y. A.; Ivanov, V. T.; Kiryushkin, A. A.; Zhdanov,
G. L.; Ryabova, I. D. Experientia 1963, 19, 566–568; (b) Bahdury, P.; Mohammad, B.
T.; Wright, P. C. J. Ind. Microbiol. Biot. 2005, 33, 325–337; (c) Meca, G.; Soriano, J. M.;
Gaspari, A.; Ritieni, A.; Moretti, A.; Manes, J. Toxicon 2010, 56, 480–485.
2. (a) Ivanova, L.; Skjerve, E.; Eriksen, G. S.; Uhlig, S. Toxicon 2006, 47, 868–876;
(b) Tonshin, A. A.; Teplova, V. V.; Andersson, M. A.; Salkinoja-Salonen, M. S.
Toxicology 2010, 276, 49–57; (c) Meca, G.; Sospedra, I.; Valero, M. A.; Manes, J.;
Font, G.; Ruiz, M. J. Toxicol. Mech. Method 2011, 21, 503–512; (d) Fornelli, F.;
Minervini, F.; Logrieco, A. J. Invertebr. Pathol. 2004, 85, 74–79.
3. (a) Haynes, D. H.; Wiens, T.; Pressman, B. C. J. Membr. Biol. 1974, 18, 23–38; (b)
Benz, R. J. Membr. Biol. 1978, 43, 367–394.
4. McKee, T. C.; Bokesch, H. R.; McCormick, J. L.; Rashid, M. A.; Spielvogel, D.;
Gustafson, K. R.; Alavanja, M. M.; Cardellina, J. H.; Boyd, M. R. J. Nat. Prod. 1997,
60, 432–438.
5. Meca, G.; Font, G.; Ruiz, M. J. Food Chem. Toxicol. 2011, 49, 2464–2469. and
references cited therein..
6. (a) Watjen, W.; Debbab, A.; Hohlfeld, A.; Chouvolou, Y.; Kampkotter, A.; Edrada,
R. A.; Ebel, R.; Hakiki, A.; Mosaddak, M.; Totzke, F.; Kubbutat, M. H. G.; Proksch,
P. Mol. Nutr. Food Res. 2008, 53, 431–440; (b) Dornetshuber, R.; Heffeter, P.;
Kamyar, R.; Berger, W.; Lemmens-Gruber, R. Toxicol. Lett. 2006, 164S, S250.
7. Sorensen, J. L.; Nielsen, K. F.; Rasmussen, P. H.; Thrane, U. J. Agric. Food Chem.
2008, 56, 10439–10443.
8. Italy: (a) Castoria, R.; Lima, G.; Ferracane, R.; Ritieni, A. J. Food Protect. 2005, 68,
416–420; Norway: (b) Uhlig, S.; Torp, M.; Heier, B. T. Food Chem. 2006, 94, 193–
201; Nigeria: (c) Adejumo, T. O.; Hettwer, U.; Karlovsky, P. Food Addit. Contam.
2007, 24, 993–1000; Denmark: (d) Sorensen, J. L.; Nielsen, K. F.; Rasmussen, P.
H.; Thrane, U. J. Agric. Food Chem. 2008, 56, 10439–10443; Germany: (e) Goertz,
A.; Zuehlke, S.; Spiteller, M.; Steiner, U.; Dehne, H. W.; Waalwijk, C.; Vries, I.;
Oerke, E. Eur. J. Plant. Pathol. 2010, 128, 101–111; Spain: (f) Meca, G.; Zinedine,
A.; Blesa, J.; Font, G.; Manes, J. Food Chem. Toxicol. 2010, 48, 1412–1416; Czech
Rep.: (g) Malachova, A.; Dzuman, Z.; Veprikova, Z.; Vaclavikova, M.;
Zachariasova, M.; Hajslova, J. J. Agric. Food Chem. 2011, 59, 12990–12997;
Morocco: (h) Sifou, A.; Meca, G.; Serrano, A. B.; Mahnine, N.; El Abidi, A.; Manes,
J.; El Azzouzi, M.; Zinedine, A. Food Control 2011, 22, 1826–1830.
9. Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. K. Synlett 2006,
427–430.
Scheme 2. Total synthesis of (À)-enniatin B. Reagents and conditions: (a) EDCI,
DMAP (1.3 equiv), CH2Cl2 (82%); (b) H2, Pd/C, EtOAc (100%) (c) 4 M HCl/1,4-dioxane
(100%), then vacuum; (d) 10, Ghosez’s reagent, DIPEA, CH2Cl2 (91%); (e) H2, Pd/C,
EtOAc (100%); (f) 11, Ghosez’s reagent, DIPEA, CH2Cl2 (69%, 86% based on recovered
starting material); (g) H2, Pd/C, EtOAc (88%); (h) 4 M HCl/1,4-dioxane, then vacuum
(100%); (i) Ghosez’s reagent, then DIPEA, 0.005 M CH2Cl2 (56%). Ghosez’s
reagent = 1-chloro-N,N,2-trimethyl-1-propenylamine, DMAP = 4-dimethylamino-
pyridine, DIPEA = diisopropylethylamine.
10. Baxendale, I. R.; Deeley, J.; Griffiths-Jones, C. M.; Ley, S. V.; Saaby, S.; Tranmer,
G. K. Chem. Commun. 2006, 2566–2568.
11. (a) Baumann, M.; Baxendale, I. R.; Brasholz, M.; Hayward, J. J.; Ley, S. V.; Nikbin,
N. Synlett 2011, 1375–1380; (b) Hodgkinson, J. T.; Galloway, W. R. J. D.; Saraf,
S.; Baxendale, I. R.; Ley, S. V.; Ladlow, M.; Welch, M.; Spring, D. R. Org. Biomol.
Chem. 2011, 9, 57–61.
12. Scherkenbeck, J.; Lüttenberg, S.; Ludwig, M.; Brücher, K.; Kotthaus, A. Eur. J. Org.
Chem. 2012, 1546–1553.
of anhydride 6 (Scheme 1). Hydrogenolysis and acid-catalyzed
deprotection of 9 provided acid 10 and amine salt 11 respectively,
which were then coupled using Ghosez’s chloroenamine re-
agent23,24 to provide tetradepsipeptide 12. Tetradepsipeptide 12
was subjected to hydrogenolysis and coupled to a second equiva-
lent of amine salt 11 to provide hexadepsipeptide 13. Global
deprotection of 13 by hydrogenolysis and acidification provided a
linear amino acid HCl salt25 which was cyclized with Ghosez’s
reagent with the assistance of a tertiary amine base to provide
synthetic (À)-1, which was identical in all respects to a sample of
enniatin B.26
13. Albericio, F.; Burger, K.; Ruiz-Rodriguez, J.; Spengler, J. Org. Lett. 2005, 7, 597–
600. and references cited therein..
14. Teixido, M.; Albericio, F.; Giralt, E. J. Pept. Res. 2005, 65, 153–166.
15. Slurries and bulk solids can be handled in laboratory flow reactors with
)
agitating reactors or ultrasound, (see Ref.16 or monoliths (see Ref.17);
precipitation events which generate small particles out of homogenous
solution, however, bypass filters, damage pumps, and cause clogging in thin
flow lines during multi-step synthesis.
16. (a) Sedelmeier, J.; Ley, S. V.; Baxendale, I. R.; Baumann, M. Org. Lett. 2010, 12,
3618–3621; (b) Noel, T.; Naber, J. R.; Hartman, R. L.; McMullen, J. P.; Jensen, K.
F.; Buchwald, S. L. Chem. Sci. 2011, 2, 287–290; (c) Browne, D. L.; Deadman, B. J.;
Ashe, R.; Baxendale, I. R.; Ley, S. V. Org. Proc. Res. Dev. 2011, 15, 693–697.
In summary, a convenient batch total synthesis of (À)-enniatin
B from (2R)-2-hydroxy-3-methylbutanoic acid has been described