Paquette et al.
SCHEME 1
SCHEME 2
intramolecular [4 + 2] cycloaddition via a single low-
energy endo-transition-state arrangement.19 Encourag-
ingly, the two available options (see A and B in Scheme
2) were seen to differ significantly in the levels of
nonbonded steric interaction (particularly A1,3 strain) that
builds up as C-C bond formation progresses. In A, the
methyl and OPMB substituents are projected into the
region necessarily reserved for proper positioning of the
diene unit, thereby disfavoring this arrangement. Since
this level of proximity is completely skirted in B, the
latter transition state was expected to be adopted with
exclusive formation of 7.
To implement this plan, 8 was to be generated by the
Sonagashira coupling20 of 9 to 10, followed by semihy-
drogenation of the alkyne link to secure the Z double
bond geometry. The latent functionality in 8 was to be
exploited as well by macrolactonization of hydroxy acid
12 (Scheme 3). For the macrocyclization pathway, reduc-
tive cyclization of bromo lactone 11 with intramolecular
displacement involving a Weinreb amide side chain11 or
aldehyde capture would establish the final C-C bond
connection. Although the unnatural enantiomer was
targeted, the strategy outlined herein is, of course, also
viable for the dextrorotatory form with only minor
modification.
tetrahydroindane 7 might serve well as a common
advanced intermediate along two reasonably flexible
pathways involving different approaches to medium-ring
construction. In the first (Scheme 1), the focus of atten-
tion was to be directed toward elaboration of the car-
bocyclic 10-membered subunit that was destined to
become rings C and D of the target. This goal was
expected to be realized by structural modification of both
pendant chains as illustrated in 6.13,14 Cyclization by
either the Nozaki-Hiyama-Kishi protocol15 or samarium
iodide-mediated ring closure would follow.16 The continu-
ation of this analysis requires a viable route from 6 to
an R-iodo enone as typified by 5,17 the carbonylation of
which in the presence of an appropriate transition metal18
would generate the complete ABCD framework.
A key consideration in this scenario was the requisite
participation of the (E,Z,E)-1,6,8-nonatriene 8 in an
(9) (a) Munakata, R.; Hatakai, H.; Ueki, T.; Kurosaka, J .; Takao,
K.; Tadano, J . J . Am. Chem. Soc. 2003, 125, 14722. (b) Munakata, R.;
Ueki, T.; Katakai, H.; Takao, K.; Tadano, K. Org. Lett. 2001, 3, 3029.
(10) (a) Evans, D. A.; Starr, J . T. Angew. Chem., Int. Ed. 2002, 41,
1787. (b) Evans, D. A.; Starr, J . T. J . Am. Chem. Soc. 2003, 125, 13531.
(11) (a) Vanderwal, C. D.; Vosburg, D. A.; Sorensen, E. J . Org. Lett.
2001, 3, 4307. (b) Vosburg, D. A.; Vanderwal, C. D.; Sorensen, E. J . J .
Am. Chem. Soc. 2002, 124, 4552. (c) Vanderwal, C. D.; Vosburg, D. A.;
Weiler, S.; Sorensen, E. J . J . Am. Chem. Soc. 2003, 125, 5393.
(12) Paquette, L. A. Chem. Soc. Rev. 1995, 24, 9.
(13) (a) Corey, E. J .; Fuchs, P. L. Tetrahedron Lett. 1972, 3769. (b)
Critcher, D. J .; Connolly, S.; Wills, M. J . Org. Chem. 1997, 62, 6638.
(b) Horita, K.; Oikawa, Y.; Nagato, S.; Yonemitsu, O. Tetrahedron Lett.
1988, 29, 5143. (c) Mukai, C.; Kim, J . S.; Sonobe, H.; Hanaoka, M. J .
Org. Chem. 1999, 64, 6822.
(14) (a) Suffert, J .; Toussaint, D. Tetrahedron Lett. 1997, 38, 5507.
(b) Yang, W.-Q.; Kitahara, T. Tetrahedron 2000, 56, 1451. (c) Caddick,
S.; Delisser, V. M.; Doyle, V. E.; Khan, S.; Avent, A. G.; Vile, S.
Tetrahedron 1999, 55, 2737. (d) Braje, W. M.; Frackenpohl, J .; Schrake,
O.; Wartchow, R.; Beil, W.; Hoffmann, H. M. R. Helv. Chim. Acta 2000,
83, 777. (e) Banfi, L.; Guanti, G. Tetrahedron Lett. 2000, 41, 6523. (f)
Py, S.; Harwig, C. W.; Banerjee, S.; Brown, D. L.; Fallis, A. G.
Tetrahedron Lett. 1998, 39, 6139.
(15) (a) Wessjohann, L. A.; Scheid, G. Synthesis 1999, 1. (b) Fu¨rstner,
A. Chem. Rev. 1999, 99, 991. (c) Dai, W.-M.; Wu, A.; Lee, M. Y. H.;
Lai, K. W. Tetrahedron Lett. 2001, 42, 4215. (d) Elliott, M. R.; Dhimane,
A.-L.; Hamon, L.; Malacria, M. Eur. J . Org. Chem. 2000, 155. (e) Banfi,
L.; Basso, A.; Guanti, G. Tetrahedron 1997, 53, 3249. (f) Semmelhack,
M. F.; Gu, Y.; Ho, D. M. Tetrahedron Lett. 1997, 38, 5583. (g) Luker,
T.; Whitby, R. J . Tetrahedron Lett. 1996, 37, 7661. (h) Bekele, T.;
Brunette, S. R.; Lipton, M. A. J . Org. Chem. 2003, 68, 8471.
In itia tion of th e Ven tu r e. Con str u ction of Bu ild -
in g Block s R ela t ed t o 10 a n d 23 a n d Th eir Cou -
(16) (a) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307. (b)
Krief, A.; Laval, A.-M. Chem. Rev. 1999, 99, 745. (c) Kito, M.; Sakai,
T.; Shirahama, H.; Miyashita, M.; Matsuda, F. Synlett 1997, 219. (d)
Kunishima, M.; Tanaka, S.; Kono, K.; Hioki, K.; Tani, S. Tetrahedron
Lett. 1995, 36, 3707. (e) Matsuda, F.; Sakai, T.; Okada, N.; Miyashita,
M. Tetrahedron Lett. 1998, 39, 863. (f) Kunishima, M.; Nakata, D.;
Tanaka, S.; Hioki, K.; Tani, S. Tetrahedron 2000, 56, 9927.
(17) Corey, E. J .; Kirst, H. A.; Katzenellenbogen, J . A. J . Am. Chem.
Soc. 1970, 92, 6314.
(18) Cowell, A.; Stille, J . K. J . Am. Chem. Soc. 1980, 102, 4193.
(19) For recent examples of intramolecular Diels-Alder reactions
involving (E,Z,E)-trienes, see: (a) Dineen, T. A.; Roush, W. R. Org.
Lett. 2003, 5, 4725. (b) Back, T. G.; Nava-Salgado, V. O.; Payne, J . E.
J . Org. Chem. 2001, 66, 4361. (c) Back, T. G.; Payne, J . E. Org. Lett.
1999, 1, 663. (d) Diedrich, M. K.; Kla¨rner, F.-G. J . Am. Chem. Soc.
1998, 120, 6212. (e) Review: Roush, W. R. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon
Press: Oxford, 1991; Vol. 5, pp 513-550.
(20) (a) Sonogashira, K.; Tohda, Y.; Nagihara, N. Tetrahedron Lett.
1975, 4467. (b) Review: Campbell, I. B. In Organocopper Reagents: A
Practical Approach; Taylor, R. J . K., Ed.; Oxford University Press:
Oxford, 1994; pp 217-235. (c) Yu, Q.; Wu, Y.; Ding, H.; Wu, Y.-L. J .
Chem. Soc., Perkin Trans. 1 1999, 1183. (d) Madec, D.; Fe´re´zou, J .-P.
Tetrahedron Lett. 1997, 38, 6661.
6442 J . Org. Chem., Vol. 69, No. 19, 2004