592
Vol. 54, No. 4
Table 2. Three-Component Mannich-Type Reaction Catalyzed by DCKAs
Acknowledgment This work was supported in part by a
Grant in Aid from the Japan Society for the Promotion of
Science.
References and Notes
1) Li C.-J., Chan T.-H., “Organic Reactions on Aqueous Media,” John
Wiley & Sons, New York, 1997.
2) Grieco P. A. (ed.), “Organic Synthesis in Water,” Blackie Academic
and Professional, London, 1998.
Entry
Catalyst
Solvent
Yield (%)
3) Lindstrom U. M., Chem. Rev., 102, 2751—2771 (2002).
4) Li C.-J., Chem. Rev., 105, 3095—3165 (2005).
5) Shettleworth S. J., Allin S. M., Sharma P. K., Synthesis, 1997, 1217—
1239 (1997).
6) Shettleworth S. J., Allin S. M., Richard R. D., Nasturica N., Synthesis,
2000, 1035—1074 (2000).
7) Ley S. V., Baxendale I. R., Bream R. N., Jackson P. S., Leach A. G.,
Longbottom D. A., Nesi M., Scott J. S., Storer I. S., Taylor S. J., J.
Chem. Soc. Perkin Trans. 1, 2000, 3815—4195 (2000).
8) Gladysz J. A. (ed.), “Recoverable Catalysts and Reagents” in Chem.
Rev., 102, 3215—3892 (2002).
1
2
3
4
5
6
7
8
DCKA-1
DCKA-1
DCKA-2
DCKA-2
Poly-DCKA-1
Poly-DCKA-1
Poly-DCKA-2
Poly-DCKA-2
Water
CH3CN
Water
CH3CN
Water
CH3CN
Water
51
29
73
Trace
91
51
12
35
CH3CN
9) “Polymer Supported Catalysts and Reagents in Synthetic Organic
Chemistry” in Bioorg. Med. Chem. Lett., 12, 1791—1884 (2002).
10) Anastas P. T., Warner J. C., “Green Chemistry: Theory and Practice,”
Oxford University Press, New York, 1998.
Table 3. Three-Component Mannich-Type Reaction Using Various Alde-
hydes Catalyzed by Poly-DCKA-1 in Water
11) Poliakoff M., Fitzpatrick J. M., Farren T. R., Anastas P. T., Science,
297, 807—810 (2002).
12) de Miguel Y. R., Brule E., Margue R. G., J. Chem. Soc. Perkin Trans.
1, 2001, 3085—3094 (2001).
13) van Heerbeek R., Kamer P. C. J., van Leeuwen P. M. N. M., Reek J. N.
H., Chem. Rev., 102, 3717—3756 (2002).
14) Clapham B., Reger T. S., Janda K. D., Tetrahedron, 57, 4637—4662
(2001).
15) Benaglia M., Puglisi A., Cozzi F., Chem. Rev., 103, 3401—3429
(2003).
16) Kobayashi S., Akiyama R., Chem. Commun., 2003, 449—460 (2003).
17) Masaki Y., Miura T., Tetrahedron Lett., 35, 7961—7964 (1994).
18) Masaki Y., Miura T., Tetrahedron, 51, 10477—10486 (1995).
19) Miura T., Masaki Y., J. Chem. Soc. Perkin Trans. 1, 1994, 1659—1660
(1994).
Entry
RCHO
RꢀNH2
PhNH2
PhNH2
PhNH2
PhNH2
PhNH2
PhNH2
PhNH2
Yield (%)
1
2
3
4
5
6
7
8
9
p-MeO–C6H4–CHO
p-NO2–C6H4–CHO
p-Cl–C6H4–CHO
2-Furyl-CHO
PhCH2CHO
PhCH2CH2CHO
(E)-PhCHCHCHO
PhCHO
70
41
70
64
35
52
64
84
75
p-MeO–C6H4–NH2
o-MeO–C6H4–NH2
PhCHO
20) Miura T., Masaki Y., J. Chem. Soc. Perkin Trans. 1, 1995, 2155—2158
(1995).
21) Masaki Y., Miura T., Synth. Commun., 25, 1981—1987 (1995).
22) Masaki Y., Tanaka N., Miura T., Tetrahedron Lett., 39, 5799—5802
(1998).
Table 4. Recycling Experiment of Mannich-Type Reaction Using Poly-
DCKA-1 as a Catalyst in Water
23) Tanaka N., Miura T., Masaki Y., Chem. Pharm. Bull., 48, 1010—1016
(2000).
24) Tanaka N., Masaki Y., Synlett, 1999, 1277—1279 (1999).
25) Tanaka N., Masaki Y., Synlett, 2000, 406—408 (2000).
26) Tanaka N., Masaki Y., Synlett, 1999, 1960—1962 (1999).
27) Masaki Y., Yamada T., Tanaka N., Synlett, 2001, 1311—1313 (2001).
28) Arend M., Westermann B., Risch N., Angew. Chem. Int. Ed., 37,
1044—1070 (1998).
29) Gu W., Zhou W.-J., Gin D. L., Chem. Mater., 13, 1949—1951 (2001).
30) Manabe K., Mori Y., Wakabayashi T., Nagayama S., Kobayashi S., J.
Am. Chem. Soc., 122, 7202—7207 (2000).
Two-component system
Three-component system
Cycle
Yield (%)
1st
84
2nd
85
3rd
80
1st
91
2nd
90
3rd
88
31) Kobayashi S., Busujima T., Nagayama S., Synlett, 1999, 545—546
(1999).
32) Reetz M. T., Giebel D., Angew. Chem. Int. Ed., 39, 2498—2501
(2000).
shows the remarkable efficiency of poly-DCKA-1 in water
among the DCKAs examined.
Table 3 demonstrates the generality of the catalytic func-
tion of poly-DCKA-1 in the aqueous three-component Man-
nich-type reaction of 2, aniline, and anisidines, and various
aldehydes including aliphatic ones, which produce unstable
imines.45)
Poly-DCKA-1 could be used repeatedly without apprecia-
ble loss of catalytic activity in the three-component Mannich-
type reaction as well as the two-component reaction after a
simple operation to recover the catalyst46) (Table 4).
In conclusion, the novel recyclable solid catalyst poly-
33) Loh T.-P., Feng L.-C., Wei L.-L., Tetrahedron, 56, 7309—7312 (2000).
34) Loh T.-P., Liung S. B. K. W., Tan K.-L., Wei L.-L., Tetrahedron, 56,
3227—3237 (2000).
35) Iimura S., Nobutou D., Manabe K., Kobayashi S., Chem. Commun.,
2003, 1644—1645 (2003).
36) Manabe K., Mori Y., Kobayashi S., Tetrahedron, 57, 2537—2544
(2001).
37) Akiyama T., Itoh J., Fuchibe K., Synlett, 2002, 1269—1272 (2002).
38) Akiyama T., Takaya J., Kagoshima H., Synlett, 1999, 1426—1428
(1999).
39) Hamada T., Manabe K., Kobayashi S., J. Am. Chem. Soc., 126, 7768—
7769 (2004).
DCKA-1, which contains neither proton nor metal, was 40) Takahashi E., Fujisawa H., Mukaiyama T., Chem. Lett., 33, 936—937
(2004).
found highly effective in the Mannich-type reaction in water.