A R T I C L E S
Davidson et al.
contrast to original expectations, the potency of the conforma-
tionally constrained ligands were at best equal, not superior, to
their flexible peptide counterparts. Hence, the primary goal of
preparing tighter binding pseudopeptides through conformational
constraint was not achieved, and the fundamental question at
this juncture was “Why?” Did the introduction of the cyclo-
propane ring into the inhibitors not result in the expected
entropic advantage, or did unfavorable enthalpic factors such
as loss of binding contacts or steric interactions override the
entropic gains, thereby resulting in a similar free energy of
binding? Because there have been no studies that directly assess
the thermodynamic consequences (∆G°, ∆H°, and ∆S°) of pre-
organizing a ligand into its biologically active conformation,
we designed a set of calorimetric and structural experiments to
evaluate the consequences of introducing this localized confor-
mational constraint into pseudopeptides.
After considering a number of possibilities, we concluded
that complexes of Src Homology 2 (SH2) domains with
phosphotyrosyl-derived ligands would constitute an excellent
biological system in which to probe the effects of structure and
energetics of binding. SH2 domains are small protein domains
containing ∼100 amino acids that play critical roles in a variety
of signal transduction pathways.21-23 These domains specifically
bind to tyrosine-phosphorylated sites, thereby facilitating re-
cruitment of SH2 domain-containing proteins to these sites.24
The design of potent and selective SH2 domain-binding
inhibitors that selectively target these signaling processes has
been of keen interest in the pharmaceutical industry.25,26 One
notable success in this area has been the design of compounds
that are selective for the SH2 domain of the Src kinase (Src
SH2 domain) and that selectively inhibit bone resorption in
vivo.27-29
Figure 1. Conceptual design of 1,2,3-trisubstituted cyclopropane replace-
ments of peptides (A) and formulas of the peptides and pseudopeptides
used in this study (B). In (A), the rotors constrained by the substitution are
indicated by φ and ø1. In (B), compounds 3-7 are shown.
bone and the side chains in orientations that correspond to the
biologically active conformation of the peptide. Toward this
end, we designed a novel class of cyclopropane-derived dipep-
tide isosteres related to 2 (Figure 1A).13 The cyclopropane ring
in 2 replaces two atoms in the peptide backbone of the native
dipeptide 1 as well as the â-carbon of the amino acid (Yaa)
being replaced (Figure 1A). These unique replacements were
designed to orient both the peptide backbone and the amino
acid side chain by varying the stereochemistry on the cyclo-
propane ring.
To evaluate the efficacy of such replacements in biological
systems, cyclopropane-derived isosteres related to 2 were
introduced into inhibitors of renin, HIV-1 protease, matrix
metalloproteinases, and Ras farnesyltransferase, as well as
enkephalin analogues and fibrinogen receptor antagonists.14-20
These studies generally established the viability of introducing
trisubstituted cyclopropanes into biologically active analogues
of peptides and provided evidence that these replacements could
be used to probe the topography of the binding site. High affinity
ligands were identified in a number of cases; however, in
The phosphotyrosine-containing tetrapeptide Ac-pTyr-Glu-
Glu-Ile-OH (pYEEI) (3) is a well-known antagonist of the SH2
domains of the Src family of kinases.30 Examination of known
three-dimensional structures of pTyr ligands in complex with
Src family SH2 domains31-33 revealed that the cyclopropane-
derived analogues 4 and 5, which are conformationally con-
strained derivatives of 3, were well suited to probe thermody-
(21) Cantley, L. C.; Auger, K. R.; Carpenter, C.; Duckworth, B.; Graziani, A.;
Kapeller, R.; Soltoff, S. Cell 1991, 64, 281-302.
(22) Pawson, T.; Schlessinger, J. Curr. Biol. 1993, 3, 434-442.
(23) Sadowski, I.; Stone, J. C.; Pawson, T. Mol. Cell. Biol. 1986, 6, 4396-
4408.
(24) Pawson, T.; Scott, J. D. Science 1997, 278, 2075-2080.
(25) Brugge, J. S. Science 1993, 260, 918-919.
(26) Sawyer, T. K. Biopolymers 1998, 47, 243-261.
(11) Janetka, J. W.; Raman, P.; Satyshur, K.; Flentke, G.; Rich, D. H. J. Am.
Chem. Soc. 1997, 119, 441-442.
(27) Charifson, P. S. S., L. M.; Rocque, W.; Hummel, C. W.; Jordan, S. R.;
Mohr, C.; Pacofsky, G. J.; Peel, M. J.; Rodriguez, M.; Sternback, D. D.;
Consler, T. G. Biochemistry 1997, 36, 6283-6293.
(12) Smith, A. B., III; Guzman, M. C.; Sprengeler, P. A.; Keenan, T. P.;
Holcomb, R. C.; Wood, J. L.; Carroll, P. J.; Hirschmann, R. J. Am. Chem.
Soc. 1994, 116, 9947-9962.
(28) Shakespeare, W.; Yang, M.; Bohacek, R.; Cerasoli, F.; Stebbins, K.;
Sundaramoorthi, R.; Azimioara, M.; Vu, C.; Pradeepan, S.; Metcalf, C.;
Haraldson, C.; Merry, T.; Dalgarno, D.; Narula, S.; Hatada, M.; Lu, X. D.;
van Schravendijk, M. R.; Adams, S.; Violette, S.; Smith, J.; Guan, W.;
Bartlett, C.; Herson, J.; Iuliucci, J.; Weigele, M.; Sawyer, T. Proc. Natl.
Acad. Sci. U.S.A. 2000, 97, 9373-9378.
(13) Martin, S. F.; Austin, R. E.; Oalmann, C. J. Tetrahedron Lett. 1990, 31,
4731-4734.
(14) Hillier, M. C.; Davidson, J. P.; Martin, S. F. J. Org. Chem. 2001, 66, 1657-
1671.
(15) Martin, S. F.; Austin, R. E.; Oalmann, C. J.; Baker, W. R.; Condon, S. L.;
deLara, E.; Rosenberg, S. H.; Spina, K. P.; Stein, H. H.; Cohen, J.; Kleinert,
H. D. J. Med. Chem. 1992, 35, 1710-1721.
(29) Violette, S. M.; Shakespeare, W. C.; Bartlett, C.; Guan, W.; Smith, J. A.;
Rickles, R. J.; Bohacek, R. S.; Holt, D. A.; Baron, R.; Sawyer, T. K. Chem.
Biol. 2000, 7, 225-235.
(16) Martin, S. F.; Dorsey, G. O.; Gane, T.; Hillier, M. C.; Kessler, H.; Baur,
M.; Mathae, B.; Erickson, J. W.; Bhat, T. N.; Munshi, S.; Gulnik, S. V.;
Topol, I. A. J. Med. Chem. 1998, 41, 1581-1597.
(30) Zhou, S. Y.; Shoelson, S. E.; Chaudhuri, M.; Gish, G.; Pawson, T.; Haser,
W. G.; King, F.; Roberts, T.; Ratnofsky, S.; Lechleider, R. J.; Neel, B. G.;
Birge, R. B.; Fajardo, J. E.; Chou, M. M.; Hanafusa, H.; Schaffhausen, B.;
Cantley, L. C. Cell 1993, 72, 767-778.
(17) Martin, S. F.; Dwyer, M. P.; Hartmann, B.; Knight, K. S. J. Org. Chem.
2000, 65, 1305-1318.
(31) Waksman, G.; Kominos, D.; Robertson, S. C.; Pant, N.; Baltimore, D.;
Birge, R. B.; Cowbrun, D.; Hanafusa, H.; Mayer, B. J.; Overduin, M.; Resh,
M. D.; Rios, C. B.; Silverman, L.; Kuryian, J. Nature 1992, 358, 646-
653.
(18) Martin, S. F.; Oalmann, C. J.; Liras, S. Tetrahedron 1993, 49, 3521-3532.
(19) Baker, W. R.; Jae, H. S.; Martin, S. F.; Condon, S. L.; Stein, H. H.; Cohen,
J.; Kleinert, H. D. Bioorg. Med. Chem. Lett. 1992, 2, 1405-1410.
(20) Bovy, P. R.; Tjoeng, F. S.; Rico, J. G.; Rogers, T. E.; Lindmark, R. J.;
Zablocki, J. A.; Garland, R. B.; McMackins, D. E.; Dayringer, H.; et al.
Bioorg. Med. Chem. 1994, 2, 881-895.
(32) Waksman, G.; Shoelson, S. E.; Pant, N.; Cowburn, D.; Kuriyan, J. Cell
1993, 72, 779-790.
(33) Eck, M. J.; Shoelson, S. E.; Harrison, S. C. Nature 1993, 362, 87-91.
9
206 J. AM. CHEM. SOC. VOL. 124, NO. 2, 2002