C O M M U N I C A T I O N S
Scheme 3a
Scheme 5a
a 1) 1.1 equiv n-Bu2BOTf, 1.2 equiv TEA, DCM, 0 °C, 30 min; 1.2
equiv BnOCH2CHO, -78 to 0 °C, 2 h; 2) 3.5 equiv MeNH(OMe)‚HCl,
3.5 equiv Me3Al, THF, 0 °C to rt 8 h; 3) 3.0 equiv H2CCHMgBr, THF, rt
3 h; 4) 1.2 equiv Et3B, 1.2 equiv NaBH4, THF-MeOH (2.5:1), -78 °C, 5
h; 5) 1.5 equiv, PhCH(OMe)2, 0.05 equiv CSA, DCM, rt 1 h; 6) 2.5 equiv
DIBAL, DCM, rt 1 h; 7) 0.05 equiv OsO4, 3.0 equiv NMO, acetone-H2O
(3:1), rt 16 h; 2.0 equiv NaIO4, rt 1 h; 8) 1.5 equiv NaBH4, EtOH, 0 °C, 30
min; 9) 1.1 equiv TBSCl, 1.3 equiv imidazole, DCM, 0 °C, 1 h; 10) 1.5
equiv HCCCO2Et, 0.2 equiv NMM, MeCN, rt 2 d; 11) concd HCl, MeOH,
0 °C, 90 min; 12) 1.5 equiv CBr4, 1.4 equiv Ph3P, 3.0 equiv pyridine, DCM,
0 °C to rt 2 h; 13) 1.5 equiv Bu3SnH, 0.2 equiv AIBN, benzene (0.02 M),
reflux, 4 h (syringe pump, 3 h); 14) H2, Pd/C, MeOH, rt 3 h; 15) 3.0 equiv
TBSOTf, 5.0 equiv 2,6-lutidine, DCM, rt 3 h; 16) 1.2 equiv LiBH4, ether,
rt 12 h; 17) 4.0 equiv SO3‚pyridine, 8.0 equiv TEA, DMSO-DCM (1:1),
0 °C, 1 h; 18) 7.5 equiv CrCl2, 2.0 equiv CHI3, dioxane-THF (6:1), rt 10
h; 19) 0.2 equiv CSA, MeOH, rt 1 h; 20) 4.0 equiv SO3‚pyridine, 8.0 equiv
TEA, DMSO-DCM (1:1), 0 °C, 1 h; 21) 1.5 equiv MeO2C(Me)CHPO-
(OCH2CF3)2, 1.5 equiv KHMDS, 2.0 equiv 18-c-6, THF, -78 °C, 1 h; 22)
2.5 equiv DIBAL, DCM, -78 °C, 1 h; 23) 20 equiv MnO2, DCM, rt 12 h.
a 1) 1.2 equiv LDA, THF, -78 °C; 1.3 equiv 27, THF, -78 °C to rt 10
h; 2) 0.005 M CSA, MeOH, 50 equiv (HOCH2)2, rt 8 h; 3) 3.0 equiv TBSCl,
5.0 equiv imidazole, DCM, rt 2 h; 4) 3.0 equiv 34, 4.0 equiv DIC, 2.5
equiv DMAP, DCM, rt 20 h; 5) 0.1 equiv Pd2dba3, 10 equiv DIPEA, NMP
(0.004 M), rt 16 h; 6) 5.0 equiv LiEt3BH, THF, -78 °C, 1 h; 7) 5.0 equiv
SO3‚pyridine, 10 equiv TEA, DMSO-DCM (1:1), 0 °C, 2 h; 8) 6.0 equiv
32, 5.5 equiv KHMDS, THF, -78 °C, 1.0 equiv 37, 5 min; -78 °C to rt
10 h; 9) ex. HF‚pyridine, ex. pyridine, THF, rt 16 h.
Comparison of the NMR spectra revealed that 3 represented the
correct structure of lasonolide A except the specific rotation, which
was opposite to the reported value for the natural product.13 In the
present studies, an excellent stereocontrol was achieved in the
introduction of the quaternary center at C-22 via 6-endo, 6-exo
tandem radical cyclization reactions of a â-alkoxyacrylate.
Acknowledgment. We thank the Ministry of Science and
Technology, Republic of Korea, and Korea Institute of Science and
Technology Evaluation and Planning for a National Research
Laboratory Grant (1999). Brain Korea 21 graduate fellowship grants
to H.Y.S. and C.K.J. are gratefully acknowledged.
Scheme 4a
Supporting Information Available: Selected experimental pro-
cedures and spectral data for 1, 2, 3, and other isomers, and further
schemes and references (PDF). This material is available free of charge
a 1) 1.0 equiv cyclohexanone, 1.5 equiv BF3‚OEt2, ether, 0 °C to rt 20
h; 2) 3.0 equiv BH3‚DMS, 3.0 equiv B(OMe)3, THF, 0 °C to rt 8 h; 3) 1.2
equiv TBSCl, 1.5 equiv imidazole, DCM, rt 1 h; 4) 3.0 equiv 30, 1.0 equiv
NaH, THF, rt 1 h; 5) 1.3 equiv TBSCl, 1.5 equiv imidazole, 0.05 equiv
DMAP, DCM, rt 12 h; 6) HF‚pyridine, pyridine, THF, rt 1 h; 7) 1.5 equiv
Ph3P, 1.5 equiv I2, 3.0 equiv imidazole, THF, rt 1 h; 8) 2.0 equiv Ph3P,
MeCN, reflux, 16 h.
References
(1) Horton, P. A.; Koehn, F. E.; Longley, R. E.; McConnell, O. J. J. Am.
Chem. Soc. 1994, 116, 6015-6016.
(2) See the Supporting Information.
(3) For synthetic studies in the literature, see: (a) Beck, H.; Hoffmann, H.
M. R. Eur. J. Org. Chem. 1999, 2991-2995. (b) Nowakowski, M.;
Hoffmann, H. M. R. Tetrahedron Lett. 1997, 38, 1001-1004. (c) Gurjar,
M. K.; Chakrabarti, A.; Venkateswara Rao, B.; Kumar, P. Tetrahedron
Lett. 1997, 38, 6885-6888. (d) Gurjar, M. K.; Kumar, P.; Venkateswara
Rao, B. Tetrahedron Lett. 1996, 37, 8617-8620.
which the (Z)-enoate 26 was prepared following the Still proce-
dure.12 The aldehyde 27 was in turn obtained from 26 (Scheme 3).
Synthesis of the side chain fragment started from D-malic acid
(28), which was converted into the ketal 29 after selective ketal
formation, borane reduction, and TBS protection. After reaction
of 29 with the alcohol 30, the primary alcohol 31 was obtained via
TBS protection and selective TBS deprotection. The phosphonium
salt 32 was prepared from the alcohol 31 via iodide substitution
(Scheme 4).
Julia-Julia reaction between the sulfone 18 and the aldehyde
27 generated the trans double bond producing the intermediate 33.
Careful acetonide deprotection and selective silylation led to the
formation of the corresponding secondary alcohol, and esterification
with the acid 34 led to the preparation of the trans-â-stannylacrylate
35: the undesired cis-â-stannylacrylate isomer was easily separated
and recycled under basic conditions. Intramolecular Stille coupling
reaction of 35 proceeded uneventfully to provide the macrolactone
36, which was converted into the aldehyde 37. Wittig reaction
between the ylide prepared from 32 and the aldehyde 37 led to the
product 3 after subsequent TBS deprotection (Scheme 5).
(4) Chen, K.-M.; Gunderson, K. G.; Hardtmann, G. E.; Prasad, K.; Repic,
O.; Shapiro, M. J. Chem. Lett. 1987, 1923-1926.
(5) For selected examples of â-alkoxyacrylate radical cyclizations, see: (a)
Lee, E.; Park, C. M.; Yun, J. S. J. Am. Chem. Soc. 1995, 117, 8017-
8018. (b) Lee, E.; Jeong, E. J.; Kang, E. J.; Sung, L. T.; Hong, S. K. J.
Am. Chem. Soc. 2001, 123, 10131-10132. (c) For further references,
see: Lee, E. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P.,
Eds.; Applications, Vol. 2; Wiley-VCH: Weinheim, 2001; pp 303-333.
(6) For selected examples of similar 6-endo cyclization reactions, see: (a)
Wilt, J. W. J. Am. Chem. Soc. 1981, 103, 5251-5253. (b) Koreeda, M.;
George, I. A. J. Am. Chem. Soc. 1986, 108, 8098-8100.
(7) Tamao, K.; Kakui, T.; Akita, M.; Iwahara, T.; Kanatani, R.; Yoshida, J.;
Kumada, M. Tetrahedron 1983, 39, 983-990.
(8) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998,
26-28.
(9) Williams, D. R.; Brooks, D. A.; Berliner, M. A. J. Am. Chem. Soc. 1999,
121, 4924-4925.
(10) For similar reaction sequences, see: Evans, D. A.; Kaldor, S. W.; Jones,
T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001-7031.
(11) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408-
7410.
(12) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
(13) The reported value1 for natural lasonolide A: [R]D +24.4 (c 0.045, CDCl3).
The value obtained for 3: [R]20 D -24.1 (c 0.055, CDCl3). The unnatural
enantiomer 3 was obtained in 0.68% total yield from ethyl L-malate (4)
in 36 steps in the longest sequence.
JA017265D
9
J. AM. CHEM. SOC. VOL. 124, NO. 3, 2002 385