COMMUNICATIONS
References
Previously, gold-catalyzed reactions of alkynes with
allylic and propargylic alcohols exclusively afforded
1,5-enones and 1,5-allenyl ketones though initial hy-
droalkoxylations, followed by the Claisen rearrange-
ments.[15] Here, we report gold-catalyzed 1,4-carbo-
[1] a) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev.
2008, 108, 335–3378; b) A. S. K. Hashmi, Chem. Rev.
2007, 107, 3180–3211; c) A. Fꢁrstner, Chem. Soc. Rev.
2009, 38, 3208–3221; d) N. T. Patil, Y. Yamamoto,
Chem. Rev. 2008, 108, 3395–3442; e) S. Abu Sohel, R. S.
Liu, Chem. Soc. Rev. 2009, 38, 2269–2281; f) E. Jime-
nez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108,
3326–3350; g) M. E. Muratore, A. Homs, C. Obradors,
A. M. Echavarren, Chem. Asian J. 2014, 9, 3066–3082;
h) F. Lopez, J. L. MascareÇas, Chem. Soc. Rev. 2014, 43,
2904–2915; i) N. Marion, S. P. Nolan, Chem. Soc. Rev.
2008, 37, 1776–1782.
[2] For gold catalysis, see: a) J. M. Ketcham, B. Biannic, A.
Aponick, Chem. Commun. 2013, 49, 4157–4159;
b) A. G. Suarez, D. Gasperini, S. V. C. Vummaleti, A.
Poater, L. Cavallo, S. P. Nolan, ACS Catal. 2014, 4,
2701–2705; c) J. A. Mulder, R. P. Hsung, M. O. Freder-
ick, M. R. Tracey, C. A. Zificsak, Org. Lett. 2002, 4,
1383–1386; d) R. Ding, Y. Li, C. Tao, B. Cheng, H.
Zhai, Org. Lett. 2015, 17, 3994–3997.
ACHTUNGTRENNUNGoxyACHTUNGTRENNUNG
genations of 3-en-1-ynamides[16] with allylic alco-
hols and propargylic alcohols, yielding a,b-unsaturat-
ed amides through non-Claisen pathways. The mecha-
nism involves self-ionizations of initial gold enol
ethers to form C-bound gold dienolates C that cap-
ture allylic or propargylic cations to yield the ob-
served products. These reactions work with a wide
scope of 3-en-1-ynamides and electron-rich propargyl-
ic or allylic alcohols; common ynamides are also ap-
plicable substrates. The new finding of this work in-
creases the utility of gold-catalyzed hydroalkoxyla-
tions of alkynes.
Experimental Section
[3] a) M. O. Frederick, R. P. Hsung, R. H. Lambeth, J. A.
Mulder, M. R. Tracey, Org. Lett. 2003, 5, 2663–2666;
b) K. C. M. Kurtz, M. O. Frederick, R. H. Lambeth,
J. A. Mulder, M. R. Tracey, R. P. Hsung, Tetrahedron
2006, 62, 3928–3938; c) Y. Kong, K. Jiang, J. Cao, L.
Fu, L. Yu, G. Lai, Y. Cui, Z. Hu, G. Wang, Org. Lett.
2013, 15, 422–425; d) M. Egi, K. Shimizu, M. Kamiya,
Y. Ota, S. Akai, Chem. Commun. 2015, 51, 380–383;
e) C. Cheng, S. Liu, G. Zhu, Org. Lett. 2015, 17, 1581–
1584.
[4] a) L. Yamamoto, S. Tanaka, T. Fujimoto, K. Ohka, J.
Org. Chem. 1989, 54, 743–747; b) J. Yoshida, S. Nakata-
ni, S. Isoe, Tetrahedron Lett. 1990, 31, 2425–2428; c) F.
Chen, B. Mudryk, T. Cohen, Tetrahedron 1994, 50,
12793–12810; d) T. K. Hutton, K. Muir, D. J. Procter,
Org. Lett. 2002, 4, 2345–2347; e) M. Yasuda, S. Tsuji, Y.
Shigeyoshi, A. Baba, J. Am. Chem. Soc. 2002, 124,
7440–7447.
[5] a) S. Pyo, J. F. Skowron, J. K. Cha, Tetrahedron Lett.
1992, 33, 4703–4706; b) K. Burger, K. Geith, K. Gaa,
Angew. Chem. 1988, 100, 860–861; Angew. Chem. Int.
Ed. 1988, 27, 848–849; c) A. L. Castelhano, S. Horne,
G. J. Taylor, R. Billdedeau, A. Krantz, Tetrahedron
1988, 44, 5451–5466.
[6] a) Y. Fukuda, K. Utimoto, J. Org. Chem. 1991, 56,
3729–3731; b) J. H. Teles, S. Brode, M. Chabanas,
Angew. Chem. 1998, 110, 1475–1478; Angew. Chem.
Int. Ed. 1998, 37, 1415–1418; c) M. R. Kuram, M. Bha-
nuchandra, A. K. Sahoo, J. Org. Chem. 2010, 75, 2247–
2258.
Synthesis of (E)-N-Butyl-5-(4-methoxyphenyl)-3-
ethyl-N-(methylsulfonyl)-7-phenylhept-2-en-6-yn-
amide (4c)
To a dry toluene solution (2 mL) of Ph3PAuCl (0.023 g,
0.046 mmol) and AgOTf (0.012 g, 0.046 mmol) was added
a toluene (1 mL) solution of N-butyl-N-(3-methylbut-3-en-1-
yn-1-yl)methanesulfonamide 1a (0.10 g, 0.46 mmol) and 1-
(4-methoxyphenyl)-3-phenylprop-2-yn-1-ol
2c
(0.11 g,
0.46 mmol) at room temperature; the resulting mixture was
stirred for 1.5 h. The resulting solution was filtered over
a short celite bed and evaporated under reduced pressure.
The residues were purified on a silica gel column using ethyl
acetate/hexane (1:9) as eluent to give compound 4c as
a yellow oil; yield: 0.191 g (0.42 mmol, 91%).
Typical Procedure for the Synthesis of (2E,6E)-N-
Butyl-3-methyl-N-(methylsulfonyl)-5,7-diphenylhepta-
2,6-dienamide (5c)
To a dry toluene solution (2 mL) of Ph3PAuCl (0.021 g,
0.042 mmol) and AgOTf (0.011 g, 0.042 mmol) was added
a toluene (1 mL) solution of N-butyl-N-(3-methylbut-3-en-1-
yn-1-yl)methanesulfonamide 1a (0.09 g, 0.42 mmol) and (E)-
1,3-diphenylprop-2-en-1-ol, 3c (0.088 g, 0.42 mmol) at room
temperature; the resulting mixture was stirred for 2.5 h. The
resulting solution was filtered over a short celite bed, and
evaporated under reduced pressure. The residues were puri-
fied on a silica gel column using ethyl acetate/hexane (1:9)
as eluent to give compound 5c as a yellow oil; yield: 0.168 g
(0.39 mmol, 95%).
[7] a) R. P. Luts, Chem. Rev. 1984, 84, 205–247; b) H. Ito,
T. Taguchi, Chem. Soc. Rev. 1999, 28, 43–50; c) M. Hi-
ersemann, L. Abraham, Eur. J. Org. Chem. 2002, 1461–
1471.
[8] a) O. Debleds, E. Gayon, E. Vrancken, J. M. Cam-
pagne, Beilstein J. Org. Chem. 2011, 7, 866–877; b) O.
Debleds, C. D. Zotto, E. Vrancken, J. M. Campagne, P.
Retailleau, Adv. Synth. Catal. 2009, 351, 1991–1998;
c) Z. P. Zhan, J. L. Yu, H. J. Liu, Y. Y. Cui, R. F. Yang,
W. Z. Yang, J. P. Li, J. Org. Chem. 2006, 71, 8298–8301.
Acknowledgements
The authors wish to thank the National Science Council,
Taiwan for supporting this work.
Adv. Synth. Catal. 0000, 000, 0 – 0
6
ꢀ 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!