Khodaei et al.
11
Table 3. Comparison of the effects of different conditions for diphenylsulfoxide preparation from diphenylsulfide.
Entry
Conditions
Yield (%)
Time (min)
Ref.
12
120
35
1
MoO3 (0.05 mmol), H2O2 (1.34 mmol), 50 °C, EtOH
98
95
91
89
99
85
90
2
PMo11VO40H3Py (0.01mol), H2O2 (2 equiv.), RT, CH3CN
30
24
31
25
32
26
3
Mn (III) Schiff-base complex (0.03 mmol), H2O2 (4 equiv.), RT, CH3COOH
MoO2Cl2 (1.5 mol%), H2O2 (1.05 equiv.), RT, CH3COCH3–H2O (1.5:1.0)
TEMPO (0.01 mmol), Cu (II) complex (0.005 mmol), H2O2 (2 equiv.), 20 °C, CH3CN
(Bu4N)3[PMo12O40] (0.01 mmol) – FAp (1 g), H2O2 (1.05 equiv.), 4 °C, solvent-free
SeO2 (1 equiv.), H2O2 (1 equiv.), RT, MeOH
4
20
5a
6a
7
270
4320
10
aThe sulfide was methyl phenyl sulfide.
8. C.G. Venier, T.G. Squires, Y.-Y. Chen, G.P. Hussmann, J.C.
Shei, and B.F. Smith. J. Org. Chem. 47, 3773 (1982).
9. A. McKillop and J.A. Tarbin. Tetrahedron Lett. 24, 1505
(1983).
Spectroscopic data
Compound 4 (Table 1) mp 97–99 °C. IR (KBr, cm–1) νmax
:
1
1027. H NMR (500 MHz, CDCl3) δH: 7.50–7.41 (m, 5H),
7.08 (d, J = 7.7 Hz, 2H), 6.90 (d, J = 7.7 Hz, 2H), 4.08 (d,
J = 12.6 Hz, 1H), 3.97 (d, J = 12.6 Hz, 1H), 2.35 (s, 3H).
10. R.P. Greenhalgh. Synlett, 235 (1992).
11. S. Yamazaki. Bull. Chem. Soc. Jpn. 69, 2955 (1996).
12. R.S. Varma, R.K. Saini, and H.M. Meshram. Tetrahedron Lett.
38, 6525 (1997).
Compound 8 (Table 1) mp 139 to 140 °C. IR (KBr, cm–1)
1
ν
max: 1067, 1034. H NMR (500 MHz, CDCl3) δH: 7.58 (d,
J = 8.3 Hz, 2H), 7.32–7.27 (m, 3H, Ph), 7.24 (d, J = 8.3 Hz,
2H), 7.02 (d, J = 8.3 Hz, 2H), 4.10 (d, J = 12.5 Hz, 1H),
4.00 (d, J = 12.5 Hz, 1H).
13. B.M. Choudary, B. Bharathi, C.V. Reddy, and M.L. Kantam. J.
Chem. Soc. Perkin Trans. 1, 2069 (2002).
14. D. Bethell, P.C.B. Page, and H. Vahedi. J. Org. Chem. 65,
6756 (2000).
15. K. Yazu, T. Furuya, K. Miki, and K. Ukegawa. Chem. Lett. 32,
920 (2003).
16. M. Matteucci, G. Bhalay, and M. Braley. Org. Lett. 5, 235
(2003).
17. B. Yadollahi. Chem. Lett. 32, 1066 (2003).
18. E. Baciocchi, M. Francesca Gerini, and A. Lapi. J. Org. Chem.
69, 3586 (2004).
Compound 4 (Table 2) mp 150–152 °C. IR (KBr, cm–1)
ν
max: 1137, 1298. 1H NMR (500 MHz, CDCl3) δH: 7.70–7.67
(m, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H),
7.10 (d, J = 7.9 Hz, 2H), 7.00 (d, J = 7.9 Hz, 2H), 4.30 (s,
2H), 2.36 (s, 3H).
Compound 8 (Table 2) mp 156–158 °C. IR (KBr, cm–1)
1
ν
max: 1305, 1140, 1080. H NMR (500 MHz, CDCl3) δH:
7.60 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.37–7.30
(m, 3H), 7.10 (d, J = 7.2 Hz, 2H), 4.32 (s, 2H).
19. Y.-C. Jeong, S. Choi, Y.D. Hwang, and K.-H. Ahn. Tetrahe-
dron Lett. 45, 9249 (2004).
20. S. Velusamy, A. V. Kumar, R. Saini, and T. Punniyamurthy.
Tetrahedron Lett. 46, 3819 (2005).
21. K. Kaczorowska, Z. Kolarska, M. Katarzyna, and P. Kowalski.
Acknowledgments
We are thankful to the Razi University Research Council
for partial support of this work.
Tetrahedron, 61, 8315 (2005).
22. K. Bahrami. Tetrahedron Lett. 47, 2009 (2006).
23. J.R. Lindsay Smith, J. Murray, P.H. Walton, and T.R. Lowdon.
Tetrahedron Lett. 47, 2005 (2006).
24. F. Hossienpoor and H. Golchoubian. Tetrahedron Lett. 47,
5195 (2006).
References
1. M. Hudlicky. Oxidation in organic chemistry. ACS Monograph
Ser. 186. American Chemical Society, Washington, DC. 1990.
p. 252.
25. S. Velusamy, A.V. Kumar, R. Saini, and T. Punniyamurthy.
Tetrahedron Lett. 46, 3819 (2005).
2. J. Drabowski, P. Kielbasinski, and M. Mikolajczyk. Synthesis
of Sulfoxides. John Wiley and Sons, New York. 1994.
3. S. Pati and Z. Rappoport. The synthesis of sulphones,
sulphoxides, and cyclic sulphides. John Wiley and Sons, New
York. 1994.
26. J. Drabowicz and M. Mikolajczyk. Synthesis, 758 (1978).
27. M.M. Khodaei, P. Salehi, and M. Goodarzi. Synth. Commun.
31, 1253 (2001).
28. P. Salehi, M.M. Khodaei, and M. Goodarzi. Synth. Commun.
32, 1259 (2002).
4. R.S. Varma, R.K. Saini, and H.M. Meshram. Tetrahedron Lett.
29. P. Salehi, M.M. Khodaei, and M. Goodarzi. Russ. J. Org.
Chem. 392 (2002).
38, 6525 (1997).
5. G.W. Gokel, H.M. Gerdes, and D.M. Dishong. J. Org. Chem.
45, 3634 (1980).
6. W. Adam and L. Hadjiarapoglou. Tetrahedron Lett. 33, 469
(1992).
30. G.P. Romanelli, P.G. Vazquez, and P. Tundo. Synlett, 75 (2005).
31. K. Jeyakumar and D.K. Chand. Tetrahedron Lett. 47, 4573
(2006).
32. Y. Sasaki, K. Ushimarou, K. Iteya, H. Nakayama, S.
Yamaguchi, and J. Ichihara. Tetrahedron Lett. 45, 9513 (2004).
7. Y. Ishii, H. Tanaka, and Y. Nishiyama. Chem. Lett. 1 (1994).
© 2007 NRC Canada