A. S.-Y. Lee et al. / Tetrahedron Letters 47 (2006) 7085–7087
7087
Table 2. Cross-coupling reaction of phenyltriethoxysilane with bromo-
benzene
References and notes
1. Fugami, K.; Kosugi, M. Top. Curr. Chem. 2002, 219, 87.
2. Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React.
1997, 50, 1.
Br
+
Si(OEt)3
3 mol% Pd-catalyst, 2.0 TBAF
reflux, 23hr (0.2M)
3. Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
4. Littke, A.; Fu, G. C. Angew. Chem., Int. Ed. 1999, 38, 2411.
5. Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58,
9633.
6. Miyaura, N. Top. Curr. Chem. 2002, 219, 11.
7. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
8. Miyaura, N. Cross-Coupling Reaction; Springer: Berlin,
2002.
9. Hiyama, T.; Shirakawa, E. Top. Curr. Chem. 2002, 219,
61.
10. Horn, K. A. Chem. Rev. 1995, 95, 1317.
11. Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem.
Rev. 1993, 93, 1371.
Pd(OH)2, toluene
Pd(OH)2, 1,4-dioxane
Pd(OAc)2, toluene
PdCl2, toluene
Pd(PPh3)2Cl2, toluene
Pd(dba)2, toluene
Pd2(dba)3, toluene
Pd(dppf)2Cl2, toluene
20%
45%
68%
42%
72%
66%
61%
63%
90%
82%
Pd(PhCN)2Cl2, toluene
Pd(PPh3)4, toluene
12. Nakao, Y.; Imanaka, H.; Sahoo, A. K.; Yada, A.;
Hiyama, T. J. Am. Chem. Soc. 2005, 127, 6952.
13. Shindo, M.; Matsumoto, K.; Shishido, K. Synlett 2005,
176.
14. Li, J.-H.; Deng, C.-L.; Xie, Y.-X. Synthesis 2006, 969.
15. Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35,
835.
that 2-bromofluorene was transformed to the corre-
sponding triethoxysilane without blocking the acidic
protons which were easily deprotonated by Grignard
reagent (Table 1, entry 8). The dibromides such as 1,
4-dibromobenzene and 2,5-dibromothiophene were
successfully transformed to their bis(triethoxysilane)
compounds which were the important synthetic interme-
diates for material science (Table 1, entries 9 and 11).
2-Bromopyridine was resistant under the reaction condi-
tion (Table 1, entry 12).
16. Seganish, W. M.; DeShong, P. J. Org. Chem. 2004, 69,
6790.
17. Wolf, C.; Lerebours, R. Org. Lett. 2004, 6, 1147.
18. McElroy, W. T.; DeShong, P. Org. Lett. 2003, 5, 4779.
19. Manoso, A. S.; Ahn, C.; Soheili, A.; Handy, C. J.;
Correia, R.; Seganish, W. M.; DeShong, P. J. Org. Chem.
2004, 69, 8305.
20. Manoso, A. S.; DeShong, P. J. Org. Chem. 2001, 66, 7449.
21. Murata, M.; Ishikura, M.; Nagata, M.; Watanabe, S.;
Masuda, Y. Org. Lett. 2002, 4, 1843.
22. Lee, A. S.-Y.; Chu, S.-F.; Wang, S.-H.; Chang, Y.-T.
Tetrahedron Lett. 2004, 45, 1551.
23. Lee, A. S.-Y.; Chang, Y.-T.; Wang, S.-H.; Chu, S.-F.
Tetrahedron Lett. 2002, 43, 8489.
24. Lee, A. S.-Y.; Dai, W.-C. Tetrahedron 1997, 53, 859.
25. Lai, Y.-H. Synthesis 1981, 585. The addition of 1,2-
dibromoethane was used for the activation of metal and it
reacted with Mg powder in situ to generate Lewis acid
MgBr2 and ethene.
26. All aryl bromides and reagents were purchased from
Aldrich and Riedel-deHaen and all were used directly
without further purification.
The previous studies in the literatures28–35 have shown
that aryltrialkoxysilanes undergo palladium-catalyzed,
fluoride-mediated coupling reactions with various aro-
matic compounds. Among these reported reaction pro-
cedures, aryltrimethoxysilane is generally selected and
investigated for Hiyama cross-coupling reaction. There-
fore, we further investigated the coupling reaction of
bromobenzene with phenyltriethoxysilane under differ-
ent palladium catalysts (Table 2). A reaction mixture
of 3 mol % palladium catalyst, tetrabutylammonium
fluoride (TBAF), phenyltriethoxysilane and bromobenz-
ene in toluene was refluxed for 23 h. The results showed
that the Pd(PhCN)2Cl2 was the best choice of catalyst
for the coupling reaction.
27. The ultrasonic cleaning bath (Elma-T490DH, 50 kHz)
should be filled with water containing some 3–5% deter-
gent. In our laboratory, we used Decon 90 which permits
much more even cavitation in bath water.
28. Murata, M.; Shimazaki, R.; Watanabe, S.; Masuda, Y.
Synthesis 2001, 2231.
29. Seganish, W. M.; DeShong, P. J. Org. Chem. 2004, 69,
1137.
30. Denmark, S. E.; Ober, M. H. Aldrichim. Acta 2003, 36, 75.
31. Riggleman, S. L.; DeShong, P. J. Org. Chem. 2003, 68,
8106.
32. Lee, J. Y.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 5616.
33. Lee, H. M.; Nolan, S. P. Org. Lett. 2000, 2, 2053.
34. Mowery, M. E.; DeShong, P. Org. Lett. 1999, 1, 2137.
35. Hiyama, T.; Hatanaka, Y. Pure Appl. Chem. 1994, 66,
1471.
In conclusion, this reaction condition provides a simple
method for the preparation of aryltriethoxysilane which
is the important synthetic intermediate for biologically
active compounds and organic materials. The synthetic
application of aryltriethoxysilane for Hiyama cross-cou-
pling reaction was studied and the proper Pd-catalyzed
reaction condition was established.
Acknowledgements
We thank the National Science Council in Taiwan (NSC
94-2113-M-032-004) and Tamkang University for finan-
cial support.