Chemistry Letters 2000
799
J. Chem., Sect. B, 23B, 720 (1984); S. Chorbadzhiev, Synth.
Commun., 20, 3495 (1990); A. Furstner, D. N. Jumbam, and N.
Shi, Z. Naturforsch, B: Chem. Sci., 50, 326 (1995); P. Ferrer, C.
Avendano, and M. Soellhuber, Liebigs Ann. Chem., 1995, 1895;
C. W. Holzapfel and C. Dwyer, Heterocycles, 48, 215 (1998).
For related electrocyclic reactions affording quinoline deriva-
tives, L. G. Qiang and N. H. Baine, J. Org. Chem., 53, 4218
(1988); T. Saito, H. Ohmori, E. Furuno, and S. Motoki, J. Chem.
Soc., Chem. Commun., 1992, 22; P. Molina, M. Alajarin, A.
Vidal, and P. Sanchez-Andrada, J. Org. Chem., 57, 929 (1992);
T. Saito, H. Ohmori, T. Ohkubo, and S. Motoki, J. Chem. Soc.,
Chem. Commun., 1993, 1802.
a) J. S. Swenton, Tetrahedron Lett., 1967, 2855. b) F. Eloy and
A. Deryckere, J. Heterocycl. Chem., 7, 1191 (1970). c) R. L.
Williams and M. G. Elfayoumy, J. Heterocycl. Chem., 9, 1021
(1972). d) L. Luoi, M. D. Bartberger, and W. R. Dolbier, Jr., J.
Am. Chem. Soc., 119, 12366 (1997).
that β-substituted o-isocyanatostyrenes requires high activation
energies for cyclization.
A number of reagents,9 such as ozone,9a halogens in the
presence of dimethyl sulfoxide,9b nitrogen oxide,9c or pyridine
oxide,9d have been reported to oxidize isocyanides to the corre-
sponding isocyanates. These reagents, however, are undoubt-
fully unsuitable for the present transformation. To the best of
our knowledge, this is the first report which indicates that
mCPBA can oxidize isocyano group to isocyanato group.
A typical procedure is illustrated by the preparation of 4-
methylquinolin-2(1H)-one (3a). To a stirred solution of 1a
(0.28 g, 2.0 mmol) in dichloromethane (10 mL) at 0 °C was
added mCPBA (80%, purchased from Kanto Chemical Co.,
Inc.; 0.43 g, 2.0 mmol) in several portions. The reaction mix-
ture was then allowed to warm to room temperature and stirred
overnight at that temperature. The resulting mixture was trans-
ferred to a separating funnel using dichloromethane (20 mL),
washed with saturated aqueous sodium carbonate, and dried
over anhydrous sodium sulfate. After evaporation of the sol-
vent, the crude solid material was purified by recrystallization
from diethyl ether–hexane to afford the pure quinolinone 3a
(0.11 g, 70%) as a white solid; mp 217–220 °C; identified by a
direct comparison with commercially available compound (pur-
chased from Tokyo Kasei Kogyo Co., Ltd.) (mp 221–223 °C).10
In comparison to the previously described syntheses of
quinolin-2(1H)-one derivatives,6 the advantages of the synthe-
sis described here are that the reaction procedure is simple and
the products are readily obtained by recrystallization in high
purity. Applications of the present process to the synthesis of
related heterocycle–fused pyridone derivatives are now in
progress in our laboratory.
4
5
6
7
R. Smith and K. Livinghouse, Tetrahedron, 41, 3559 (1985).
S. C. Bell, T. S. Sulkowski, G. Gochman, and S. J. Childress, J.
Org. Chem., 27, 562 (1962).
1
8
1a: Rf 0.78 (1:2 EtOAc–hexane); IR (neat) 2122 cm–1; H NMR
(270 MHz, CDCl3) δ 2.10 (3H, s), 5.07 (1H, s), 5.29 (1H, s), and
7.2–7.35 (4H, m); MS m/z (%) 143 (M+, 20) and 117 (100). 1b:
Rf 0.72 (1:2 EtOAc–hexane); IR (neat) 2122 cm–1; 1H NMR
(270 MHz, CDCl3) δ 5.40 (1H, s), 5.87 (1H, s), and 7.25–7.4
(9H, m); MS m/z (%) 205 (M+, 87) and 204 (100). 1c: Rf 0.77
1
(1:2 Et2O–hexane); IR (neat) 2120 cm–1; H NMR (270 MHz,
CDCl3) δ 2.02 (3H, s), 5.55 (1H, d, J = 1.1 Hz), 5.69 (1H, d, J =
1.1 Hz), and 7.1–7.35 (8H, m); MS m/z (%) 219 (M+, 22), 218
(29), and 204 (100). 1d: Rf 0.65 (1:2 EtOAc–hexane); IR (neat)
1
2123 and 1607 cm–1; H NMR (270 MHz, CDCl3) δ 3.80 (3H,
s), 5.27 (1H, d, J = 1.0 Hz), 5.77 (1H, d, J = 1.0 Hz), 6.84 (2H, d,
J = 8.9 Hz), 7.18 (2H, d, J = 8.9 Hz), and 7.3–7.45 (4H, m); MS
m/z (%) 235 (M+, 100). 1e: mp 79–81 °C (Et2O–hexane–CH2Cl2);
IR (KBr disk) 2124 and 1601 cm–1; 1H NMR (270 MHz, CDCl3)
δ 3.85 (3H, s), 3.88 (3H, s), 5.31 (1H, s), 5.79 (1H, s), 6.71 (1H,
dd, J = 8.2 and 2.0 Hz), 6.79 (1H, d, J = 8.6 Hz), 6.87 (1H, d, J =
2.0 Hz), and 7.3–7.45 (4H, m); MS m/z (%) 265 (M+, 100). 1f:
Rf 0.85 (1:2 EtOAc–hexane); IR (neat) 2121 cm–1; 1H NMR
(270 MHz, CDCl3) δ 1.80 (3H, dd, J = 6.9 and 1.1 Hz), 2.03
(3H, t, J = 1.3 Hz), 5.63 (1H, qd, J = 6.9 and 1.3 Hz), and
7.15–7.35 (4H, m); MS m/z (%) 157 (M+, 100). 1g: Rf 0.80 (1:2
Assistance in MS experiments by Mrs. Miyuki Tanmatsu
of this Department is gratefully acknowledged.
EtOAc–hexane); IR (neat) 2121 cm–1 1H NMR (270 MHz,
;
References and Notes
1
a) S. Kwon and K. Isagawa, Yuki Gosei Kagaku Kyokai Shi, 31,
313 (1973). b) R. F. Cookson and R. E. Rodway, J. Chem. Soc.,
Perkin Trans. 1, 1975, 1854. For recent examples see c) K. Hino,
K. Furukawa, Y. Nagai, and H. Uno, Chem. Pharm. Bull., 28,
2618 (1980). d) F. Haviv and R. W. Denet, US Patent 4407803
(1983); Chem. Abstr., 100, 6508b (1983). e) K. Hino, K.
Kawashima, M. Oka, Y. Nagai, H. Uno, and J. Matsumoto,
Chem. Pharm. Bull., 37, 110 (1989). f) S. Nakahara, Y. Tanaka,
and K. Kubo, Heterocycles, 36, 1139 (1993). g) K. Sakurai, S.
Niwa , S. Oono, and H. Uchita, Jpn. Patent 29979 (1998); Chem.
Abstr., 128, 192665y (1998).
a) K. Eistetter, E. Kraas, G. Ludwig, M. Miklovich, E. Rapp, and
H. Wolf, Eur. Patent, 24638 (1981); Chem. Abstr., 95, 80757b
(1981). b) H. Akashi, M. Akiyama, T. Shiga, T. Matsui, Y.
Hayashi, T. Kimura, and H. Kobayashi, Jpn. Patent 45819
(1986); Chem. Abstr., 106, 129393s (1987). c) N. Beier, E.
Labitzke, W. W. K. R. Mederski, and B. Schneider,
Heterocycles, 39, 117 (1994). d) H. Ogawa, H. Miyamoto, K.
Kondo, H. Yamashita, K. Nakaya, M. Tanaka, and K. Kitano,
PCT Int. Patent 01113 (1994); Chem. Abstr., 120, 290828m
(1994). e) T. Hasegawa, E. Sato, Y. Akiyama, T. Mori, M.
Yamauchi, T. Imanishi, T. Imai, and D. Kubota, PCT Int. Patent
07703 (1998); Chem. Abstr., 128, 204906w (1998).
CDCl3) δ 1.92 (3H, d, J = 7.1 Hz), 6.02 (1H, q, J = 7.1 Hz), and
7.15–7.45 (9H, m); MS m/z (%) 219 (M+, 43) and 218 (100). 1h:
1
mp 86–88 °C (hexane); IR (KBr disk) 2124 m–1; H NMR (270
MHz, CDCl3) δ 5.40 (1H, d, J = 1.0 Hz), 5.88 (1H, d, J = 1.0
Hz), and 7.2–7.35 (8H, m); MS m/z (%) 241 (10), 239 (M+, 31)
and 204 (100).
a) H. Feuer, H. Rubinstein, and A. T. Nielsen, J. Org. Chem., 23,
1107 (1958). b) H. W. Johnson, Jr. and P. H. Daughhetee, Jr., J.
Org. Chem., 29, 246 (1964). c) T. Saegusa, S. Kobayashi, and Y.
Ito, Bull. Chem. Soc. Jpn., 43, 275 (1970). d) H. W. Johnson, Jr.,
and H. Krutch, J. Org. Chem., 32, 1939 (1967).
9
2
10 Physical and spectral properties for new quinolinones 3 follows.
3c: mp 201–203 °C (Et2O); IR (KBr disk) 3439 and 1651 cm–1;
1H NMR (270MHz, CDCl3) δ 2.14 (3H, s), 6.62 (1H, s),
7.05–7.55 (8H, m), and 12.2 (1H, br); MS m/z (%) 235 (M+,
100). 3e: mp 243–246 °C (Et2O–CHCl3); IR (KBr disk) 3426
and 1651 cm–1; 1H NMR (270 MHz, CDCl3) δ 3.91 (3H, s), 3.97
(3H, s), 6.70 (1H, s), 6.95–7.1 (3H, m), 7.17 (1H, t, J = 7.9 Hz),
7.45–7.6 (2H, m), 7.70 (1H, d, J = 7.9 Hz), and 11.6 (1H, br);
MS m/z (%) 281 (M+, 0.8), 237 (12), and 208 (100). 3f: mp
265–268 °C (CHCl3–Et2O); IR (KBr disk) 3442 and 1649 cm–1;
1H NMR (270 MHz, CDCl3) δ 2.32 (3H, s), 2.49 (3H, s),
7.15–7.7 (3H, m), 7.70 (1H, d, J = 7.9 Hz), and 11.2 (1H, br);
MS m/z (%) 173 (M+, 100). 3g: mp 227–230 °C (hexane–Et2O);
IR (KBr disk) 3449 and 1654 cm–1; 1H NMR (270 MHz, CDCl3)
δ 2.07 (3H, s), 7.05–7.7 (2H, m), 7.2–7.3 (2H, m), 7.35–7.6 (5H,
m), and 11.6 (1H, br); MS m/z (%) 235 (M+, 57) and 234 (100).
3
G. Merault, P. Bourgeois, and N. Duffaut, Bull. Soc. Chim. Fr.,
1974, 1949; N. A. Cortese, C. B. Ziegler, Jr., B. J. Henjez, and
R. F. Heck, J. Org. Chem., 43, 2952 (1978); S. Kano, T. Ozaki,
and S. Hibino, Heterocycles, 12, 489 (1979); M. Matarajan, T.
Manimaran, and V. T. Ramakrishnan, Indian J. Chem., Sect. B,
23B, 529 (1984); M. Matarajan and V. T. Ramakrishnan, Indian