F. Nagatsugi et al. / Bioorg. Med. Chem. Lett. 11 (2001) 2577–2579
2579
ating the ethylthiovinyl nucleoside is negligible. In con-
References and Notes
trast, the ODN (13) incorporating the ethylsulfoxyvinyl
nucleoside exhibited the most efficient reaction, and the
yield was as high as 50% at 1 h and reached 80% after
12 h. Although the phenylsulfoxide analogue (15) pro-
duced the adduct in over 80% yield under acidic condi-
tions, only slow reaction was observed under the neutral
condition. Thus, it has been proved that the new ethyl-
sulfoxyvinyl nucleoside may be applicable under
physiological conditions. The ODN (14) with an ethyl-
sulfonylvinyl analogue gave the adduct in a lower
yield than the ODN (13), which differs from the
theoretical assumption that has suggested similar ÁG
values for both the methylsulfoxy- and methylsulfonyl-
vinyl (Table 1). As the primary product after the addi-
tion reaction is only slightly more stable than the
transition state in the reaction with the sulfonylvinyl
compound, a reverse reaction to the starting structure
might impede the promotion to adduct formation.
1. (a) Webb, T. R.; Matteucci, M. D. J. Am. Chem. Soc. 1986,
108, 2764. (b) Webb, T. R.; Matteucci, M. D. Nucleic Acids
Res. 1986, 14, 7661.
2. (a) Zeng, Q.; Rokita, S. E. J. Org. Chem. 1996, 61, 9080. (b)
Chatterjee, M.; Rokita, S. E. J. Am. Chem. Soc. 1994, 116,
1690. (c) Li, T.; Rokita, S. E. J. Am. Chem. Soc. 1991, 113,
7771. (d) Chatterjee, M.; Rokita, S. E. J. Am. Chem. Soc.
1991, 113, 5116.
3. Cowart, M.; Benkovic, S. J. Biochemistry 1991, 30, 788.
4. (a) Coleman, R. S.; Pires, R. M. Nucleic Acids Res. 1997,
25, 4771. (b) Coleman, R. S.; Kesicki, E. A. J. Org. Chem.
1995, 60, 6252.
5. (a) Tabone, J. C.; Stamm, M. R.; Gamper, H. B.; Meyer,
R. B., Jr. Biochemistry 1994, 33, 375. (b) Meyer, R. B., Jr.;
Tabone, J. C.; Hurst, G. D.; Smith, T. M.; Gamper, H. B. J.
Am. Chem. Soc. 1989, 111, 8517.
6. Lukhtanov, E. A.; Podyminogin, M. A.; Kutyavin, I. V.;
Meyer, R. B., Jr.; Gamper, H. B. Nucleic Acids Res. 1996, 24,
683.
7. (a) Chang, E. H.; Miller, P. S.; Cushman, C.; Devadas, K.;
Pirollo, K. F.; Ts’o, P. O. P.; Yu, Z. P. Biochemistry 1991, 30,
8283. (b) Kean, J. M.; Murakami, A.; Blake, K. R.; Cushman,
C. D.; Miller, P. S. Biochemistry 1988, 27, 9113. (c) Lee, B. L.;
Murakami, A.; Blake, K. R.; Lin, S.-B.; Miller, P. S. Bio-
chemistry 1988, 27, 3197.
8. Shaw, J.-P.; Milligan, J. F.; Krawczyk, S. H.; Matteucci,
M. D. J. Am. Chem. Soc. 1991, 113, 7765.
9. (a) Grant, K. B.; Dervan, P. B. Biochemistry 1996, 65,
12313. (b) Povsic, T. J.; Strobel, S. A.; Dervan, P. B. J. Am.
Chem. Soc. 1992, 114, 5934. (c) Povsic, T. J.; Dervan, P. B. J.
Am. Chem. Soc. 1990, 112, 9428.
10. Takasugi, M.; Guenouz, A.; Chassignol, M.; Deout, J. L.;
Lohmme, J.; Thuong, N. T.; Helene, C. Proc. Natl. Acad. Sci.
U.S.A. 1991, 88, 5602.
Figure 3. Base selectivity of the cross-linking. Reaction conditions are
recorded in the caption of Figure 2.
11. Lukhtanov, E. A.; Mills, A. G.; Kutyavin, I. V.; Vladimir,
V. V.; Reed, M. W.; Meyer, R. B., Jr. Nucleic Acids Res. 1997,
25, 5077.
12. Woolf, T. M. Nature Biotechnol. 1998, 16, 341; and refer-
ences cited therein.
Figure 3 illustrates high cytidine selectivity of the ODN
(13) bearing the ethylsulfonylvinyl nucleoside in the
reaction with the target ODN (16, N=C, G, A, or T).
In all cases, adduct formation was observed only to the
ODN (16) with C at the target site.
13. (a) Nagatsugi, F.; Uemura, K.; Nakashima, S.; Maeda,
M.; Sasaki, S. Tetrahedron Lett. 1995, 36, 421. (b) Nagatsugi,
F.; Uemura, K.; Nakashima, S.; Maeda, M.; Sasaki, S. Tetra-
hedron 1997, 53, 3035.
14. (a) Nagatsugi, F.; Kawasaki, T.; Usui, D.; Maeda, M.;
Sasaki, S. J. Am. Chem. Soc. 1999, 121, 6753. (b) Kawasaki,
T.; Nagatsugi, F.; Maeda, M.; Sasaki, S. Nucleic Acids Sym-
posium Series 1999, 42, 43. (c) Nagatsugi, F.; Kawasaki, T.;
Tanaka, Y.; Maeda, M.; Sasaki, S. Nucleic Acids Symposium
Series 1998, 39, 103. (d) Nagatsugi, F.; Kawasaki, T.; Maeda,
M.; Sasaki, S. Nucleic Acids Symposium Series 1997, 37, 67. (e)
Nagatsugi, F.; Kawasaki, T.; Maeda, M.; Sasaki, S. Nucleic
Acids Symposium Series 1996, 35, 79.
Finally, we have successfully demonstrated that
2-amino-6-(1-ethylsulfoxyvinyl)purine exhibited selec-
tive and efficient cross-linking to a cytidine at the target
site under neutral conditions. As this new reactive motif
is stable under the reaction conditions, 2-amino-6-(1-
ethylsulfoxyvinyl)purine will be useful in the antisense
strategy as well as for site-directed chemical modifica-
tion of a cytidine within a selected target. Application of
the 2-amino-6-(1-ethylsulfoxyvinyl)purine motif to
TFOs for triplex cross-linking is now under study.
15. Nagatsugi, F.; Usui, D.; Kawasaki, T.; Maeda, M.;
Sasaki, S. Bioorg Med. Chem. Lett. 2001, 11, 343.
16. Schulhof, J. C.; Dolko, D.; Teoule, R. Nucleic Acids Res.
1987, 15, 397.
Acknowledgements
This study was partially supported by a Grant-in-Aid
for Scientific Research [Priority Area (A)(2), No.
13022250] from the Ministry of Education, Science,
Sports, Science and Technology, Japan.
17. Nagai, H.; Fujiwara, T.; Fujii, M.; Sekine, M.; Hata, T.
Nucleic Acids Res. 1987, 17, 8581.
18. Koh, J. S.; Dervan, P. B. J. Am. Chem. Soc. 1992, 114,
1470.