10.1002/chem.201705601
Chemistry - A European Journal
COMMUNICATION
[2] For leading references to sustainable synthetic routes to amides: a) S. L.
Zultanski, J. Zhao, S. S. Stahl, J. Am. Chem. Soc. 2016, 138, 6416–6419;
b) C. Gunanathan, Y. Ben-David, D. Milstein, Science 2007, 317,
790−792; c) J-F. oul , H. Miyamura, S. Kobayashi, J. Am. Chem. Soc.
2011, 133, 18550−18553; d) K. Yamaguchi, H. Kobayashi, T. Oishi, N.
Mizuno, Angew. Chem. Int. Ed. 2012, 51, 544−547; Angew. Chem. 2012,
124, 559-562; e) Y. Wang, D. Zhu, L. Tang, S. Wang, Z. Wang, Angew.
Chem. Int. Ed. 2011, 50, 8917−8921; Angew. Chem. 2011, 123, 9079-
9083; f) H. Fujiwara, Y. Ogasawara, M. Kotani, K. Yamaguchi, N. Mizuno,
Chem. Asian J. 2008, 3, 1715-1721; g) Y. Wang, K. Yamaguchi, N.
Mizuno, Angew. Chem. Int. Ed. 2012, 51, 7250-7253; Angew. Chem.
2012, 124, 7362-7365; h) K. Yamaguchi, H. Kobayashi, Y. Wang, T. Oishi,
Y. Ogasawara, N. Mizuno, Catal. Sci. Technol. 2013, 3, 318-327; i) H.
Fujiwara, Y. Ogasawara, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed.
2007, 46, 5202-5205; Angew. Chem. 2007, 119, 5294-5297; j) K.
Yamaguchi, M. Matsushita, N. Mizuno, Angew. Chem. Int. Ed. 2004, 43,
intermediate (1e) along with the elimination of one water
molecule. Concomitant -hydride elimination results in the
formation of an imine intermediate () and regeneration of 1b.
Imine so formed again undergoes oxidation in a similar manner
[3] M. T. Schumperli, C. Hammond, I. Hermans, ACS Catal. 2012, 2, 1108-
1117 and references therein.
[4] a) X-F. Wu, C. B. Bheeter, H. Neumann, P. H. Dixneuf, M. Beller, Chem.
Commun. 2012, 48, 12237-12239; b) K. Tanaka, S. Yoshifuji, Y. Nitta,
Chem. Pharm. Bull. 1988, 36, 3125-3129; c) R. M. Moriarty, R. K. Vaid, M.
P. Duncan, M. Ochiai, M. Inenaga, Y. Nagao, Tetrahedron Lett. 1988, 29,
6913-6916; d) C. J. Legacy, A. Wang, B. J. O’Day, M. H. Emmert,
Angew.Chem. Int. Ed. 2015, 54, 14907-14910; Angew. Chem. 2015, 127,
15120-15123; e) W. Xu, Y. Jiang, H. Fu, Synlett 2012, 23, 801-804; f) J.
W. Kim, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2008, 47,
9249-9251; Angew. Chem. 2008, 120, 9389-9391; g) Y. Wang, H.
Kobayashi, K. Yamaguchi, N. Mizuno, Chem. Commun. 2012, 48, 2642-
2644; h) X. Jin, K. Kataoka, T. Yatabe, K. Yamaguchi, N. Mizuno, Angew.
Chem. Int. Ed. 2016, 55, 7212-7217; Angew. Chem. 2016, 128, 7328-
7333; i) S. Murata, M. Miura, M. Nomura, J. Chem. Soc. Chem. Commun.
1989, 116-118; j) S. Murata, M. Miura, M. Nomura, J. Org. Chem. 1989,
54, 4700-4702; k) S. Minakata, Y. Ohshima, A. Takemiya, I. Ryu, M.
Komatsu, Y. Ohshiro, Chem. Lett. 1997, 26, 311-312; l) M.-H. So, Y. Liu,
C.-M. Ho, C.-M. Che, Chem. Asian J. 2009, 4, 1551-1561; m) H.
Miyamura, M. Morita, T. Inasaki, S. Kobayashi, Bull. Chem. Soc. Jpn.
2011, 84, 588-599; n) T. Amaya, T. Ito, T. Hirao, Heterocycles 2012, 86,
927-932; o) P. Preedasuriyachai, W. Chavasiri, H. Sakurai, Synlett 2011,
8, 1121-1124; p) E. R. Klobukowski, M. L. Mueller, R. J. Angelici, L. K.
Woo, ACS Catal. 2011, 1, 703-708; q) J. R. Khusnutdinova, Y. Ben-David,
D. Milstein, J. Am. Chem. Soc. 2014, 136, 2998−3001.
Scheme 2. Plausible mechanism for Ru-catalyzed amidation.
[5] R. Ray, S. Chandra, D. Maiti, G. K. Lahiri, Chem. Eur.J. 2016, 22, 8814-
8822.
[6] R. Ray, S. Chandra, V. Yadav, P. Mondal, D. Maiti, G. K. Lahiri, Chem.
Commun. 2017, 53, 4006-4009.
[7] P. Hlavica, Drug Metab. Rev. 2002, 34, 451-477.
[8] For report on the first example of a dealkylation catalyst, see: T. Omura, R.
J. Sato, J. Biol. Chem. 1964, 239, 2370-2378.
to form nitrile () and eliminates the second molecule of water.
These eliminated water molecules in-situ facilitates the hydration
of nitrile under strong basic condition and the desired amide (IV)
is formed as the final product.
[9] In organic synthesis only a few dealkylation reactions are known: a) for
the von Braun reaction, Polonovski demethylation reaction, and others,
see: K. McCamley, J. A. Ripper, R. D. Singer, R. J. Scammells, J. Org.
[10] For a leading reference to mechanistic study on ruthenium catalyzed
oxidative dehydrogenation of amines, see: K. Yamaguchi, N. Mizuno,
Chem. Eur. J. 2003, 9, 4353-4361.
In conclusion, we have developed an efficient and sustainable
protocol for the direct oxygenation of primary amines to amides,
with ambient air as the oxidant. Under identical reaction
conditions, secondary amines undergo N-dealkylation process to
give benzamides in each case. Overall, the transformations are
clean and do not produce unwanted byproducts. They proceed
with excellent selectivity and is compatible with diverse amine
substrates ranging from benzylic, aliphatic to heterocyclic
compounds to afford the amides in high yields. This process
should be useful for the diversification of primary amides through
transamidation with different amines.
[11] K. Yamaguchi, N. Mizuno, Top. Catal. 2014, 57, 1196-1207.
Acknowledgements
Financial support received from SERB(SR/NM/NS-1065/2015),
DST and UGC (fellowship to R. R. and A.S. H.), India, are
gratefully acknowledged.
Keywords: amines • direct oxygenation • amides • ambient air •
chemoselective • mechanistic study
[1] a) C. E. Mabermann in Encyclopedia of Chemical Technology, Vol. 1
(Eds.: J. I. Kroschwitz), Wiley, New York, 1991, pp. 251–266; b) D. Lipp in
Encyclopedia of Chemical Technology, Vol. 1 (Eds.: J. I. Kroschwitz),
Wiley, New York, 1991, pp. 266–287; c) R. Opsahl in Encyclopedia of
Chemical Technology, Vol. 1 (Eds.: J. I. Kroschwitz), Wiley, New York,
1991, pp. 346–356.
This article is protected by copyright. All rights reserved.