D
L. Wang et al.
Special Topic
Synthesis
Ar-SF4Cl 6; General Procedure
Acknowledgment
In a glovebox under argon, the appropriate Ar-S-P(O)(OEt)2 precursor
2 (0.2 mmol, 1 equiv), TCICA (840 mg, 3.6 mmol, 18 equiv), and rigor-
ously dried KF (372 mg, 6.4 mmol, 32 equiv) were added to an oven-
dried 12 mL PTFE reaction vial equipped with a stir bar. Under vigor-
ous stirring, anhydrous and degassed MeCN (2.0 mL) was added to the
mixture, followed by the addition of a 0.1 M solution of TFA in MeCN
(0.2 mL). Then the vial was sealed with a septum-pad cap and the re-
action was stirred at rt in the glovebox for 24 h. After this time, the
atmosphere in the vial was vented carefully and the internal standard
,,-trifluorotoluene was added into the mixture. After 10 min of
stirring, an aliquot of the resulting solution was filtered under argon.
The NMR sample was prepared with the filtered aliquot (0.4 mL) and
CD3CN (0.1 mL) for 19F NMR yield determination. Please note that, al-
though Ar-SF4Cl is not too sensitive to moisture, the use of dry reac-
tion vials and anhydrous solvent, as well as carrying out the experi-
ment and workup under argon benefited the reaction. See Supporting
Information for NMR analysis.
We are thankful to all analytical services at the MPI Kohlenforschung
for help. In particular, we are grateful to Dr. M. Leutzsch and the NMR
Department for help in structure elucidation. We are thankful to Prof.
Dr. A. Fürstner for discussions and generous support.
Supporting Information
Supporting information for this article is available online at
p
p
ortingI
n
formatio
n
S
u
p
p
ortingInformati
o
n
References
(1) (a) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.;
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V.; Liu, H. Chem. Rev.
2014, 114, 2432. (b) Gillis, E. P.; Eastman, K. J.; Hill, M. D.;
Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
(2) (a) Campbell, M. G.; Ritter, T. Org. Process Res. Dev. 2014, 18,
474. (b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed.
2013, 52, 8214. (c) Purser, S.; Moore, P. S.; Swallow, S.;
Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(3) (a) Murphy, C. D.; Sandford, G. Expert. Opin. Drug Metab. Toxicol.
2015, 11, 589. (b) Xing, L.; Blakemore, D. C.; Narayanan, A.;
Unwalla, R.; Lovering, F.; Denny, R. A.; Zhou, H.; Bunnage, M. E.
ChemMedChem 2015, 10, 715.
4-BrC6H4-SF5 (8)
4-BrC6H4-SF4Cl (6b) was synthesized according the general procedure
described above. Upon the completion of the reaction, the atmo-
sphere in the vial was vented carefully and the suspension was trans-
ferred to a flame-dried Schlenk tube under argon. Then the solvent
and other volatile constituents were evaporated carefully under vacu-
um at 0 °C. To the residue, an anhydrous and degassed mixture of
hexane/DCM (9:1) was added to extract the Ar-SOF3 compound (3 × 4
mL). The resulting solution was filtered in two batches of ca. 6 mL un-
der argon followed by concentration of the filtrate under vacuum. The
crude product of Ar-SF4Cl was used immediately for the next step.
(Please note, some kinds of Ar-SF4Cl are very volatile. Even at low
temperature, the concentration led to significant loss of Ar-SF4Cl). The
crude product of Ar-SF4Cl (ca. 0.1 mmol, 1 equiv) was dissolved in 1
mL of dry and degassed DCM followed by the addition of AgBF4 (0.2
mmol, 2 equiv) under argon. The mixture was stirred at 100 °C for 48
h. Upon completion of the reaction, the resulting solution was then
concentrated and further purified by column chromatography (silica
gel, pentane/EtOAc, 20:1); this gave 8; yield: 19 mg (49%).
(4) (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
(5) Tlili, A.; Toulogat, F.; Billard, T. Angew. Chem. Int. Ed. 2016, 55,
11726.
(6) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880.
(7) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
(8) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 48, 7465.
(9) (a) Barnes-Seeman, D.; Jain, M.; Bell, L.; Ferreira, S.; Cohen, S.;
Chen, X. H.; Amin, J.; Snodgrass, B.; Hatsis, P. ACS Med. Chem.
Lett. 2013, 4, 514. (b) Gianatassio, R.; Kawamura, S.; Eprile, C. L.;
Foo, K.; Ge, J.; Burns, A. C.; Collins, M. R.; Baran, P. S. Angew.
Chem. Int. Ed. 2014, 53, 9851.
(10) (a) Sowaileh, M. F.; Hazlitt, R. A.; Colby, D. A. ChemMedChem
2017, 12, 1481. (b) Westphal, M. V.; Wolfstädter, B. T.; Plancher,
J.-M.; Gatfield, J.; Carreira, E. M. ChemMedChem 2015, 10, 461.
(11) True, J. E.; Thomas, T. D.; Winter, R. W.; Gard, G. L. Inorg. Chem.
2003, 42, 4437.
1H NMR (298 K, 300 MHz, CDCl3): = 7.55–7.48 (m, 4 H).
19F{1H} NMR (298 K, 282 MHz, CDCl3): = 83.5 (m, 1 F), 63.0 (d, J =
150.3 Hz, 4 F).
13C NMR (298 K, 75 MHz, CDCl3): = 152.6 (m), 131.9, 127.6 (quin, J =
4.7 Hz), 126.1.
(12) (a) Matsuzaki, K.; Okuyama, K.; Tokunaga, E.; Saito, N.; Shiro,
M.; Shibata, N. Org. Lett. 2015, 17, 3038. (b) Du, J.; Hua, G.; Beier,
P.; Slawin, A. M. Z.; Woolins, J. D. Struct. Chem. 2017, 28, 723.
(13) (a) Wipf, P.; Mo, T.; Geib, S. J.; Caridha, D.; Dow, G. S.; Gerena, L.;
Roncal, N.; Milner, E. E. Org. Biomol. Chem. 2009, 7, 4163.
(b) Ajenjo-Barcenas, J.; Greenhall, M.; Yarantonello, C.; Beier, P.
Beilstein J. Org. Chem. 2016, 12, 192. (c) Vida, N.; Václavík, J.;
Beier, P. Beilstein J. Org. Chem. 2016, 12, 192.
Conflict of Interest
The authors declare no conflict of interest.
Funding Information
(14) (a) Bowden, R. D.; Comina, P. J.; Greenhall, M. P.; Kariuki, B. M.;
Loveday, A.; Philp, D. Tetrahedron 2000, 56, 3399. (b) Altomonte,
S.; Zanda, M. J. Fluorine Chem. 2012, 143, 57. (c) Savoie, P. R.;
Welch, J. T. Chem. Rev. 2015, 115, 1130. (d) Umemoto, T.;
Garrick, L. M.; Saito, N. Beilstein J. Org. Chem. 2012, 8, 461.
(e) Umemoto, T.; Singh, R. P. J. Fluorine Chem. 2012, 140, 17.
(f) Ajenjo, J.; Klepetářová, B.; Greenhall, M.; Bím, D.; Culka, M.;
Rulíšek, L.; Beier, P. Chem. Eur. J. 2019, 25, 11375. (g) Beier, P.
Pentafluorosulfanylation of Aromatics and Heteroaromatics, In
Financial support for this work was provided by the Max-Planck-Ge-
sellschaft, the Max-Planck-Institut für Kohlenforschung, and the
Fonds der Chemischen Industrie (VCI). This work was also supported
by an Exploration Grant of the Boehringer Ingelheim Foundation
(BIS).Max-Planck-Geselschaft()Verban
d
d
er
C
h
e
m
ischenI
n
d
ustrie()B
o
e
hri
n
g
erI
n
g
elheimStiftu
n
g
()
© 2021. Thieme. All rights reserved. Synthesis 2021, 53, A–E