M. Komatsu et al. / Tetrahedron Letters 42 (2001) 9221–9223
9223
(c) Bassindale, A. R.; Brook, A. G.; Harris, J. J. Organomet.
Chem. 1975, 90, C6.
5. (a) Larson, G. L.; Lo´pez-Cepero, I. M.; Torres, L. E.
Tetrahedron Lett. 1984, 25, 1673–1676; (b) Brook, A. G.;
MacRae, D. M.; Limburg, W. W. J. Am. Chem. Soc. 1967,
89, 5493–5495.
Me3Si
Ph
O
∆
R
Ph
S
R
OSiMe3
1
2
– S
6. Thioesters1werepreparedbyreactionofa-silylbenzylthiols
to acyl chlorides. For example, a procedure of synthesis of
S-a-trimethylsilylbenzyl thiobenzoate 1a is as follows. To
a solution of a mixture of a-trimethylsilylbenzylthiol (2.03
g, 10.0 mmol) and triethylamine (1.47 g, 14.0 mmol) in 40
ml of diethyl ether was added dropwise benzoyl chloride
(1.48 g, 10.0 mmol) at 0°C. The mixture was stirred for 2
h at 0°C, and the reaction was quenched with water. The
aqueous layer was extracted twice with diethyl ether (50 ml),
and the combined extracts were dried with anhydrous
MgSO4. The solution was concentrated in vacuo. Purifica-
tion by recrystallization in benzene/hexane was afforded
S-a-trimethylsilylbenzyl thiobenzoate 1a (2.94 g, 95%).
7. Geiß, K.-H.; Seebach, D.; Seuring, B. Chem. Ber. 1977, 110,
1833–1851.
OSiMe3
R
R
Ph
–
OSiMe3
Ph
S
+
S
3
4
Scheme 2.
respectively. The formation of thiophene derivatives in
the reactions of 1e, f provides us with additional per-
suasive evidence for thiocarbonyl ylides as intermedi-
ates in the reactions.
In summary, we report on the successful development
of a simple new method for the preparation of silyl enol
ethers from S-a-silylbenzyl thioesters via the thermal
1,4-silatropy and cyclization of dipoles. In this method,
the starting materials, S-a-silylbenzyl thioesters, can be
readily prepared by esterification of carboxylic acid
derivatives with a-silylbenzylthiols, and the reactions
proceed under completely neutral conditions. We are
currently investigating the mechanism for this reaction
in more detail, as well as dipolar cycloaddition utilizing
in situ generated intermediates 3.
8. Structures and E/Z ratios of silyl enol ethers 2a, d, g, and
h were determined by comparison of their 1H NMR spectra
with known data. (a) Anders, E.; Stankowiak, A.; Riemer,
R. Synthesis 1987, 931–934; (b) Davis, F.; Sheppard, A. C.;
Chen, B.-C.; Haque, M. S. J. Am. Chem. Soc. 1990, 112,
6679–6689; (c) Fleming, I.; Roberts, R. S.; Smith, S. C. J.
Chem. Soc., Perkin. Trans. 1 1998, 1209–1214; (d) Fu¨rstner,
A.; Seidel, G.; Gabor, B.; Kopiske, C.; Kru¨ger, C.; Mynott,
R. Tetrahedron 1995, 51, 8875–8888. Structures and/or E/Z
ratios of silyl enol ethers 2b, c, e, and f were determined
by1HNMR;Z-2b:1HNMR(C6D6):l−0.07(s, 9H, SiMe3),
1
6.10 (s, 1H, PhCH), 7.0–8.0 (m, 9H, Ar); E-2b: H NMR
(C6D6): l 0.11 (s, 9H, SiMe3), 6.23 (s, 1H, PhCH), 7.0–8.0
(m, 9H, Ar); Z-2c: 1H NMR (C6D6): l 0.05 (s, 9H, SiMe3),
3.30 (s, 3H, OMe), 6.19 (s, 1H, PhCH), 6.7–7.8 (m, 9H,
Acknowledgements
1
Ar); E-2c: H NMR (C6D6): l 0.19 (s, 9H, SiMe3), 3.19
This work was partially supported by a Grant-in-Aid
for Scientific Research from the Ministry of Education,
Culture, Sports, Science, and Technology of Japan.
(s, 3H, OCH3), 6.26 (s, 1H, PhCH), 6.6–8.0 (m, 9H, Ar);
Z-2e: 1H NMR (C6D6): l 0.13 (s, 9H, SiMe3), 5.81 (s, 1H,
PhCHꢁCOSiMe3-), 7.8–8.2 (m, 12H, Ar and -CHꢁCHPh);
E-2e: 1H NMR (C6D6): l 0.27 (s, 9H, SiMe3), 6.22 (s, 1H,
PhCHꢁCOSiMe3-), 7.8–8.2 (m, 12H, Ar and -CHꢁCHPh);
Z-2f: 1H NMR (CDCl3): l 0.09 (s, 9H, SiMe3), 1.82 (d, 3H,
J=5.7 Hz, Me), 5.64 (s, 1H, PhCHꢁ), 5.94 (dq, 1H, J=15.4
and 5.7 Hz, -CHꢁCHMe), 6.03 (d, 1H, J=15.4 Hz,
-CHꢁCHMe), 7.1–7.5(m, 5H, Ph);E-2f:1HNMR(CDCl3):
l 0.28 (s, 9H, SiMe3), 1.79 (dd, 3H, J=7.0 and 1.1 Hz, Me),
5.88 (s, 1H, PhCHꢁ), 6.14 (dq, 1H, J=15.1 and 7.0 Hz,
-CHꢁCHMe), 6.40 (dq, 1H, J=15.1 and 1.1 Hz,
-CHꢁCHMe), 7.1–7.5 (m, 5H, Ph).
References
1. (a) Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int.
Ed. Engl. 2000, 39, 1352–1374; (b) Mukaiyama, T. Angew.
Chem., Int. Ed. Engl. 1977, 16, 817–826; (c) Arend, M.;
Westermann, B.; Risch, N. Angew. Chem., Int. Ed. Engl.
1998, 37, 1044–1070; (d) Kleinman, E. F. In Comprehensive
Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Perga-
mon Press: Oxford, 1991; Vol. 2, pp. 893–951.
2. (a) Chan, T.-H. In Comprehensive Organic Synthesis; Trost,
B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991;
Vol. 2;, pp. 595–628; (b) Brownbridge, P. Synthesis 1983,
1–28; (c) Brownbridge, P. Synthesis 1983, 85–104.
3. (a) Smietana, M.; Mioskowski, C. Org. Lett. 2001, 3,
1037–1039; (b) Cahiez, G.; Figade´re, B.; Cle´ry, P. Tetra-
hedronLett. 1994, 35, 6259–6298;(c)Yamamoto, Y.;Matui,
C. Organometallics 1997, 16, 2204–2206; (d) Bonafoux, D.;
Bordeau, M.; Biran, C.; Cazeau, P.; Dunogues, J. J. Org.
Chem. 1996, 61, 5532–5536.
4. (a) Yamamoto, Y.; Ohdoi, K.; Nakatani, M.; Akiba, K.
Chem. Lett. 1984, 1967–1968; (b) Kuo, Y.-N.; Yahner, J.
A.; Ainsworth, C. J. Am. Chem. Soc. 1971, 93, 6321–6323;
9. Lesse´ne, G.; Tripoli, R.; Cazeau, P.; Biran, C.; Bordeau,
M. Tetrahedron Lett. 1999, 40, 4037–4040.
10. Bonafoux, D.; Bordeau, M.; Biran, C.; Dunogue´s, J. J.
Organomet. Chem. 1995, 493, 27–32.
11. (a) Washizuka, K.; Nagai, K.; Minakata, S.; Ryu, I.;
Komatsu, M. Tetrahedron Lett. 2000, 41, 691–695; (b)
Washizuka, K.; Minakata, S.; Ryu, I.; Komatsu, M.
Tetrahedron 1999, 55, 12969–12976; (c) Washizuka, K.;
Nagai, K.; Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron
Lett. 1999, 40, 8849–8853; (d) Iyoda, M.; Kato, F. S. A.;
Yoshida, M.; Kuwatani, Y.; Komatsu, M.; Nagase, S.
Chem. Lett. 1997, 63–64; (e) Ohno, M.; Komatsu, M.;
Miyata, H.; Ohshiro, Y. Tetrahedron Lett. 1991, 32,
5813–5816.