C O M M U N I C A T I O N S
examples where considerably larger kH/kD values have been
observed.11c,d,g,h,12 Clive et al. have also described a case where a
deuterium isotope effect helps protect against an undesired C-H
abstraction by a radical intermediate,12 and Clayden et al. have
commented on the protecting group implications of deuterium in
lithiations.11g However, the conversion from 11b to 19 is unique
in that deuterium serves as a blocking group in the tin-lithium
exchange step and is removed in the subsequent cyclization,
selenenylation, elimination sequence. The strategic benefits are
reflected in a concise synthesis of sensitive aziridinomitosene
derivatives.
Acknowledgment. The authors thank Dr. L. M. Seaney for the
preparation of 9, and for early experiments to probe the possibility
of anionic cyclizations in related substrates. This work was
supported by the National Institutes of Health (CA17918).
Supporting Information Available: Characterization of isolable
intermediates and key experimental procedures (PDF). This material
References
(1) Kiyoto, S.; Shibata, T.; Yamashita, M.; Komori, T.; Okuhara, M.; Terano,
H.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1987, 40, 594.
(2) Kiyoto, S.; Shibata, T.; Yamashita, M.; Komori, T.; Okuhara, M.; Terano,
H.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1989, 42, 145.
(3) Paz, M. M.; Hopkins, P. B. J. Am. Chem. Soc. 1997, 119, 5999. Williams,
R. M.; Rajski; S. R.; Rollins, S. B. Chem. Biol. 1997, 4, 127. Huang, H.;
Pratum, T. K.; Hopkins, P. B. J. Am. Chem. Soc. 1994, 116, 2703.
(4) (a) Patrick, J. B.; Williams, R. P.; Meyer, W. E.; Fulmor, W.; Cosulich,
D. B.; Broschard, R. W.; Webb, J. S. J. Am. Chem. Soc. 1964, 86, 1889.
(b) Review: Tomasz, M. Chem. Biol. 1995, 2, 575.
(5) Egbertson, M.; Danishefsky, S. J. J. Am. Chem. Soc. 1987, 109, 2204.
tion of 16 to form enolate 17). A comparison of NMR signals
confirmed the isomeric relationship between 14 and 18, but the
tetracyclic product could not be obtained free of 12. We therefore
repeated the cyclization sequence from 11b using phenylselenenyl
chloride to quench the intermediate enolate 17, experiment (3). The
presumed selenide intermediate was not detected, but the elimination
product 19 was obtained in 80% yield based on 11b, 71% for the
two steps (deuteration; cyclization) from 11a, or 19% overall (7
steps from N-tritylserinal). If the tricyclic side products 11b and
13 in experiment (1) and 11a + 12 in experiment (2) are formed
only from the lithiated indole 15, then the kinetic deuterium isotope
effect is responsible for the inversion of tetracyclic:tricyclic product
ratios from 1:10 in experiment (1) to ca. 4:1 in experiments (2) or
(3), and kH/kD for generation of 15 is ca. 35.
(6) (a) Dong, W.; Jimenez, L. S. J. Org. Chem. 1999, 64, 2520. (b) Hirata,
H.; Yamada, Y.; Matsui, M. Tetrahedron Lett. 1969, 19. Hirata, H.;
Yamada, Y.; Matsui, M. Tetrahedron Lett. 1969, 4107. Shaw, K. J.; Luly,
J. R.; Rapoport, H. J. Org. Chem. 1985, 50, 4515. Utsunomiya, I.; Fuji,
M.; Sato, T.; Natsume, M. Chem. Pharm. Bull. 1993, 41, 854. Utsunomiya,
I.; Muratake, H.; Natsume, M. Chem. Pharm. Bull. 1995, 43, 37. Wang,
Z.; Jimenez, L. S. J. Org. Chem. 1996, 61, 816. Edstrom, E. D.; Yu, T.
Tetrahedron 1997, 53, 4549. Lee, S.; Lee, W. M.; Sulikowski, G. A. J.
Org. Chem. 1999, 64, 4224. Vedejs, E.; Piotrowski, D. W.; Tucci, F. C.
J. Org. Chem. 2000, 65, 5498. Vedejs, E.; Klapars, A.; Naidu, B. N.;
Piotrowski, D. W.; Tucci, F. C. J. Am. Chem. Soc. 2000, 122, 5401. (c)
Franck, R. W.; Auerbach, J. J. Org. Chem., 1971, 36, 991. Siuta, G. J.;
Franck, R. W.; Kempton, R. J. J. Org. Chem. 1974, 39, 3739. (d) Cory,
R. M.; Ritchie, B. M. J. Chem. Soc., Chem. Commun. 1983, 1244.
Nakatsuka, S.; Asano, O.; Goto, T. Heterocycles 1987, 26, 1987. Jones,
G. B.; Moody, C. J. J. Chem. Soc., Chem. Commun. 1988, 1009. Jones,
G. B.; Moody, C. J.; Padwa, A.; Kassir, J. M. J. Chem. Soc., Perkin Trans.
1 1991, 1721. (e) Review: Danishefsky, S. J.; Schkeryantz, J. M. Synlett
1995, 475. See also: Kishi, Y. J. Nat. Prod. 1979, 42, 549. Fukuyama,
T.; Yang, L. J. Am. Chem. Soc. 1989, 111, 8303.
A similar anionic cyclization sequence leading to 3 may be
feasible if N-trityl cleavage and reduction of the ester can be
achieved. The prospects were evaluated with 19 as a test case.
Reductive de-tritylation with triethylsilane/MsOH under the recently
optimized conditions10 gave the parent N-H aziridine 20 (65%).
This is the first example of aziridine deprotection in the presence
of the activating indole. Also surprising was the relative ease of
reductive conversion of 19 into the isolable aziridinomitosene
alcohol 21 using lithium aluminum hydride (4 h, 0 °C). No special
precautions were used in the reduction or the aqueous workup at 0
°C, although chromatographic purification of 21 required buffered
silica gel to prevent solvolytic aziridine ring opening. The absence
of a phenolic hydroxyl group in 21 compared to structures such as
3 or 4 should substantially increase stability, but the relative ease
of handling 21 was unexpected and suggests that isolation of 3
may be an attainable synthetic goal in ongoing studies.
(7) Ziegler, F.; Belema, M. J. Org. Chem. 1994, 59, 7962. Ziegler, F. E.;
Belema, M. J. Org. Chem. 1997, 62, 1083.
(8) Vedejs, E.; Moss, W. O. J. Am. Chem. Soc. 1993, 115, 7.
(9) Synthetic Studies Towards Aziridinomitosenes; Seaney, L. M. Ph.D.
Dissertation, University of Wisconsin, 1995.
(10) Vedejs, E.; Klapars, A.; Warner, D. L.; Weiss, A. H. J. Org. Chem. 2001,
66, 0000.
(11) (a) Knaus, G.; Meyers, A. I. J. Org. Chem. 1974, 39, 1192. (b) Jacobs, S.
A.; Cortez, C.; Harvey, R. G. J. Chem. Soc., Chem. Commun. 1981, 1215.
(c) Hoppe, D.; Paetow, M.; Hintze, F. Angew. Chem., Int. Ed. Engl. 1993,
32, 394. (d) Hoppe, D.; Kaiser, B. Angew. Chem., Int. Ed. Engl. 1995,
34, 323. (e) Kopach, M. E.; Meyers, A. I. J. Org. Chem. 1996, 61, 6764.
(f) Ahmed, A.; Clayden, J.; Rowley, M. Tetrahedron Lett. 1998, 39, 6103.
(g) Clayden, J.; Pink, J. H.; Westlund, N.; Wilson, F. X. Tetrahedron
Lett. 1998, 39, 8377. (h) Anderson, D. R.; Faibish, N. C.; Beak, P. J. Am.
Chem. Soc. 1999, 121, 7553. (i) Mathieu, J.; Gros, P.; Fort, Y. Chem.
Commun. 2000, 951.
(12) Hammerschmidt, F.; Schmidt, S. Eur. J. Org. Chem. 2000, 2239. Pippel,
D. J.; Weisenburger, G. A.; Faibish, N. C.; Beak, P. J. Am. Chem. Soc.
2001, 123, 4919.
(13) Clive, D. L. J.; Tao, Y.; Khodabocus, A.; Wu, Y.-J.; Angoh, A. G.;
Bennett, S. M.; Boddy, C. N.; Bordeleau, L.; Kellner, D.; Kleiner, G.;
Middleton, D. S.; Nichols, C. J.; Richardson, S. R.; Vernon, P. G. J. Am.
Chem. Soc. 1994, 116, 11275. Clive, D. L. J.; Khodabocus, A.; Cantin,
M.; Tao, Y. J. Chem. Soc., Chem. Commun. 1991, 1755.
There are a number of prior reports where substantial deuterium
isotope effects have been encountered in lithiations, and were used
to address issues of selectivity.11 A value of kH/kD of ca. 35 for
indole ring lithiation implies tunneling, as discussed in related
JA0120835
9
J. AM. CHEM. SOC. VOL. 124, NO. 5, 2002 749