Organometallics 2002, 21, 711-716
711
Electr och em ica l Oxid a tion of Meth a n ol w ith Ru /P d ,
Ru /P t, a n d Ru /Au Heter obim eta llic Com p lexes
Gilbert J . Matare, Mark E. Tess, Ying Yang, Khalil A. Abboud, and
Lisa McElwee-White*
Department of Chemistry and Center for Catalysis, University of Florida,
Gainesville, Florida 32611
Received August 6, 2001
The heterobimetallic complexes CpRu(PPh3)(µ-Cl)(µ-dppm)PdCl2 (1) [dppm ) bis(diphen-
ylphosphino)methane], CpRu(PPh3)Cl(µ-dppm)AuCl (2), and CpRu(PPh3)(µ-Cl)(µ-dppm)PtCl2
(3) were synthesized by the reaction of CpRu(PPh3)Cl(η1-dppm) (4) with Pd(COD)Cl2,
AuPPh3Cl, and Pt(COD)Cl2, respectively. Compounds 1 and 2 were characterized by X-ray
crystallography. Electrochemical oxidation of CH3OH in the presence of 1, 2, or 3 leads to
considerable enhancement of the oxidative currents and formation of the organic products
CH2(OCH3)2 and HCOOCH3. Addition of water increases both the current and the proportion
of the more highly oxidized product, HCOOCH3. Current efficiencies obtained with
heterobinuclear complexes 1-3 were significantly higher than those obtained using the model
compound CpRuCl(η2-dppm) (5) as catalyst.
In tr od u ction
methanol binding and dehydrogenation. The Ru site is
implicated in the removal of Pt-adsorbed CO, converting
it into CO2 through intermediate Ru oxo species. These
postulates correlate to behavior of discrete species in
homogeneous solution since C-H bond rupture has been
demonstrated in mononuclear organometallic Pt(II)
complexes19-23 and Ru oxo complexes are well-known
oxidants of alcohols.24-29
Recent efforts toward the development of electrooxi-
dation catalysts for direct methanol fuel cells have
included the incorporation of a second metal to improve
the performance of Pt anodes. In addition to the com-
monly utilized Pt/Ru systems,1-7 other electrode ma-
terials including PtSn,8-10 PtRe,10 PtRuOs,11 and
PtRuOsIr12 have been investigated. Binary Pt/Ru alloys
are among the most active, exhibiting lower overpoten-
tials and less surface poisoning than pure Pt anodes.
Many experiments have addressed the mechanism of
oxidation, kinetics, bulk composition, and the nature of
their active sites.1,12-16 Earlier studies from Watanabe17
and others5,18 suggest that the Pt surface is the site of
Homogeneous catalysis with well-defined heterobi-
metallic systems has been a topic of interest due in part
to the potential to explore the cooperative interaction
of the two metals as well as the possibility for each
metal center to perform a separate and distinctive
task.30-38 Recently, we reported the electrochemical
(1) Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J . J . Phys.
Chem. 1993, 97, 12020-12029.
(17) Watanabe, M.; Motoo, S. J . Electroanal. Chem. 1975, 60, 276-
283.
(2) Wasmus, S.; Kuver, A. J . Electroanal. Chem. 1999, 461, 14-31.
(3) Gasteiger, H. A.; Markovic, N. M.; Ross, P. N. J . Phys. Chem.
1995, 99, 8290-8301.
(18) Hamnett, A.; Kennedy, B. J .; Wagner, F. E. J . Catal. 1990, 124,
30-40.
(19) Stahl, S. S.; Labinger, J . A.; Bercaw, J . E. J . Am. Chem. Soc.
1996, 118, 5961-5976.
(4) Leger, J . M.; Lamy, C. Ber. Bunsen-Ges. 1990, 94, 1021-1025.
(5) Goodenough, J . B.; Hamnett, A.; Kennedy, B. J .; Manoharan,
R.; Weeks, S. A. J . Electroanal. Chem. Interfacial Electrochem. 1988,
240, 133-145.
(20) Stahl, S. S.; Labinger, J . A.; Bercaw, J . E. Angew. Chem., Int.
Ed. 1998, 37, 2181-2192.
(21) Holtcamp, M. W.; Henling, L. M.; Day, M. W.; Labinger, J . A.;
Bercaw, J . E. Inorg. Chim. Acta 1998, 270, 467-478.
(22) Holtcamp, M. W.; Labinger, J . A.; Bercaw, J . E. J . Am. Chem.
Soc. 1997, 119, 848-849.
(6) Swathirajan, S.; Mikhail, Y. M. J . Electrochem. Soc. 1991, 138,
1321-1326.
(7) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.;
Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280,
1735-1737.
(23) Labinger, J . A.; Herring, A. M.; Lyon, D. K.; Luinstra, G. A.;
Bercaw, J . E.; Horvath, I. T.; Eller, K. Organometallics 1993, 12, 895-
905.
(24) Wong, K. Y.; Che, C. M.; Anson, F. C. Inorg. Chem. 1987, 26,
737-741.
(25) Roecker, L.; Meyer, T. J . J . Am. Chem. Soc. 1986, 108, 4066-
4073.
(8) Wang, K.; Gasteiger, H. A.; Markovic, N. M.; Ross, P. N.
Electrochim. Acta 1996, 41, 2587-2593.
(9) Katayama, A. J . Phys. Chem. 1980, 84, 376-381.
(10) Cathro, K. J . J . Electrochem. Soc. 1969, 116, 1608-1611.
(11) Ley, K. L.; Liu, R. X.; Pu, C.; Fan, Q. B.; Leyarovska, N.; Segre,
C.; Smotkin, E. S. J . Electrochem. Soc. 1997, 144, 1543-1548.
(12) Gurau, B.; Viswanathan, R.; Liu, R. X.; Lafrenz, T. J .; Ley, K.
L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk,
T. E.; Sarangapani, S. J . Phys. Chem. B 1998, 102, 9997-10003.
(13) Rolison, D. R.; Hagans, P. L.; Swider, K. E.; Long, J . W.
Langmuir 1999, 15, 774-779.
(26) Roecker, L.; Meyer, T. J . J . Am. Chem. Soc. 1987, 109, 746-
754.
(27) Thompson, M. S.; Meyer, T. J . J . Am. Chem. Soc. 1982, 104,
4106-4115.
(28) Wong, K. Y.; Yam, V. W.; Lee, W. W. Electrochim. Acta 1992,
37, 2645-2650.
(14) Kabbabi, A.; Faure, R.; Durand, R.; Beden, B.; Hahn, F.; Leger,
J . M.; Lamy, C. J . Electroanal. Chem. 1998, 444, 41-53.
(15) Iwasita, T.; Hoster, H.; J ohn-Anacker, A.; Lin, W. F.; Vielstich,
W. Langmuir 2000, 16, 522-529.
(16) Parsons, R.; VanderNoot, T. J . Electroanal. Chem. 1988, 257,
9-45.
(29) Griffith, W. P. Chem. Soc. Rev. 1992, 21, 179-185.
(30) Adams, R. D.; Barnard, T. S. Organometallics 1998, 17, 2885-
2890.
(31) Bruce, M. I. J . Organomet. Chem. 1983, 242, 147-204.
(32) Balch, A. L. In Reactivity of Metal-Metal Bonds; Chisholm, M.,
Ed.; 1981; ACS Symposium Series No. 155; pp 167-185.
10.1021/om010706h CCC: $22.00 © 2002 American Chemical Society
Publication on Web 01/15/2002