ChemComm
Communication
synthetic protocol for hydrogenating amides. Further application
of the ruthenium complex–zinc salt combination is currently
under investigation in our laboratory.
This work was financially supported by The Core Research
for Evolutional Science and Technology (CREST) program of the
Japan Science and Technology Agency (JST) and a Grant-in-Aid
for Young Scientists (B) (No. 25810062) from MEXT, Japan. T.H.
expresses his special thanks for the financial support provided
by the JSPS Research Fellowship for Young Scientists.
(1)
(2)
Notes and references
1 J. March, Advanced Organic Chemistry, Wiley, New York, 4th edn,
1992, p. 1212.
2 (a) H. C. Brown, S. Narasimhan and Y. M. Choi, Synthesis, 1981, 441;
(b) H. C. Brown and P. Hein, J. Org. Chem., 1973, 38, 912.
3 (a) S. Werkmeister, K. Junge and M. Beller, Org. Process Res. Dev.,
2014, 18, 289; (b) A. M. Smith and R. Whyman, Chem. Rev., 2014,
114, 5477.
To gain additional insight into the effects of the best additive
Zn(OCOCF3)2, we performed controlled NMR experiments. When
the ruthenium complex [RuCl2(L1)2] was mixed with Zn(OCOCF3)2
in the presence of KOtBu in 1,4-dioxane-d8, a new singlet peak
appearing at 62.6 ppm in its 31P{1H} NMR spectrum was assigned
to complex 4 bearing two trifluoroacetates in the cis position based
on X-ray crystallographic analysis [eqn (3)]. In contrast to the
observation that [RuCl2(L1)2] without any additives showed no
catalytic activity (Table 1, entry 1), the isolated complex 4 exhibited
catalytic activity for hydrogenation of 1a in the absence of a zinc salt
to afford 2a in 83% yield, suggesting that incorporation of a
trifluoroacetate ligand into the ruthenium center was essential
for the catalytic activity [eqn (4)]. The addition of Zn(OCOCF3)2
and Zn(OTf)2 to the hydrogenation catalyzed by complex 4
increased the yield of 2a to 96% and 97%, respectively, indicating
4 (a) J. H. Paden and H. Adkins, J. Am. Chem. Soc., 1936, 58, 2487;
(b) J. C. Sauer and H. Adkins, J. Am. Chem. Soc., 1938, 60, 402;
(c) J. D. D’lanni and H. Adkins, J. Am. Chem. Soc., 1939, 61, 1675.
5 H. S. Broadbent and W. J. Bartley, J. Org. Chem., 1963, 28, 2345.
6 A. Guyer, A. Bieler and G. Gerliczy, Helv. Chim. Acta, 1955, 38, 1649.
7 F. Galinovsky and E. Stern, Ber. Dtsch. Chem. Ges., 1943, 76, 1034.
8 C. Hirosawa, N. Wakasa and T. Fuchikami, Tetrahedron Lett., 1996,
37, 6749.
9 B. V. Maatschappij, E. J. M. De Bore, H. Van der Heijden, J. H. H. Meurs
and S. Wijnans, Pat., WO2010130696A1, Shell Internationale research,
p. 13.
10 G. Beamson, A. J. Papworth, C. Philipps, A. M. Smith and
R. Whyman, J. Catal., 2010, 269, 93.
11 G. Beamson, A. J. Papworth, A. M. Smith and R. Whyman, J. Catal.,
2011, 278, 228.
12 R. Burch, C. Paun, X.-M. Cao, P. Crawdord, P. Goodrich, C. Hardacre,
´
P. Hu, L. McLaughlin, J. Sa and J. M. Thompson, J. Catal., 2011,
283, 89.
an important role of the zinc ion in activating the amide bonds 13 M. Stein and B. Breit, Angew. Chem., Int. Ed., 2013, 52, 2231.
14 J. Coetzee, H. G. Manyar, C. Hardacre and D. J. Cole-Hamilton,
ChemCatChem, 2013, 5, 2843.
15 (a) M. Kliner, D. V. Tyers, S. P. Crabtree and M. A. Wood, World Pat., WO/
through its coordination to the carbonyl group. Thus, Zn(OCOCF3)2
had dual functions, as a source of a trifluoroacetate ligand and as a
Lewis-acid to activate the amide bonds.
03/093208A1, 2003; (b) A. A. N. Magro, G. R. Eastham and D. J. Cole-
Hamilton, Chem. Commun., 2007, 3154; (c) G. R. Eastham, D. J. Cole-
Hamilton and A. A. N. Magro, Pat., WO2005051875A1, Lucite Interna-
tional UK Limited, UK, 2005, p. 21; (d) J. Coetzee, D. L. Dodds,
J. Klankermayer, S. Brosinkski, W. Leitner, A. M. Z. Slawin and
D. J. Cole-Hamilton, Chem. – Eur. J., 2013, 19, 11039.
(3)
(4)
16 E. Balaraman, B. Gnanaprakasam, L. J. W. Shimon and D. Milstein,
J. Am. Chem. Soc., 2010, 132, 16756.
17 O. Ogata, W. Kuriyama and T. Matsumoto, Pat., WO201239098A1,
Takasago International Corporation, Japan, 2012, p. 21.
18 M. Ito, T. Ootsuka, R. Watari, A. Shiibashi, A. Himizu and T. Ikariya,
J. Am. Chem. Soc., 2011, 133, 4240.
19 J. M. John and S. H. Bergens, Angew. Chem., Int. Ed., 2011, 50, 10377.
20 T. Miura, I. E. Held, S. Oishi, M. Naruto and S. Saito, Tetrahedron
Lett., 2013, 54, 2674.
21 W. Kuriyama, Y. Ino, O. Ogata, N. Sayo and T. Saito, Adv. Synth.
Catal., 2010, 352, 92.
22 (a) T. Ohshima, T. Iwasaki, Y. Maegawa, A. Yoshiyama and K. Mashima,
J. Am. Chem. Soc., 2008, 14, 2060; (b) T. Iwasaki, Y. Maegawa, Y. Hayashi,
T. Ohshima and K. Mashima, Synlett, 2009, 1659; (c) T. Iwasaki,
K. Agura, Y. Maegawa, Y. Hayashi, T. Ohshima and K. Mashima,
Chem. – Eur. J., 2010, 16, 11567; (d) Y. Hayashi, T. Ohshima, Y. Fujii,
Y. Matsushima and K. Mashima, Catal. Sci. Technol., 2011, 1, 230;
(e) Y. Maegawa, T. Ohshima, Y. Hayashi, K. Agura, T. Iwasaki and
K. Mashima, ACS Catal., 2011, 1, 1178; ( f ) Y. Maegawa, K. Agura,
Y. Hayashi, T. Ohshima and K. Mashima, Synlett, 2012, 137.
23 Other metal salts also had additive effects on amide hydrogenation.
See Table S1 (ESI†).
In conclusion, we found that Zn(OCOCF3)2 had unique
additive effects on Ru-catalyzed hydrogenation of amides under
mild conditions. This catalytic system could be applied to the
hydrogenation of various amides, giving the corresponding
primary alcohols in good yield. Such a simple combination of
the ruthenium complex and the zinc salt provides a conventional
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 11211--11213 | 11213