Journal of the American Chemical Society
Page 6 of 8
– an acid-free approach for substituted heteroarene synthesis.
Chem. Sci. 2019, 10, 4389–4393.
Breakthrough with Aryl Chlorides. Angew. Chem., Int. Ed.
2017, 56, 874–879. For a catalyst-free C–S coupling, see: (e)
Liu, B.; Lim, C.-H.; Miyake, G. M. Visible-Light-Promoted C–
S Cross-Coupling via Intermolecular Charge Transfer. J. Am.
Chem. Soc. 2017, 139, 13616–13619.
1
2
3
4
5
6
7
8
12. Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Thiyl Radicals
in Organic Synthesis. Chem. Rev. 2014, 114, 2587–2693.
13. (a) Posner, T. Beiträge zur Kenntnis der ungesättigten
Verbindungen. II. Ueber die Addition von Mercaptanen an
ungesättigte Kohlenwasserstoffe. Ber. Dtsch. Chem. Ges.
1905, 38, 646–657. (b) Hoyle, C. E.; Bowman, C. N. Thiol–
Ene Click Chemistry. Angew. Chem., Int. Ed. 2010, 49, 1540–
1573.
14. For selected examples of photoredox-mediated thiol-ene
reactions, see: (a) Tyson, E. L.; Ament, M. S.; Yoon, T. P.
Transition Metal Photoredox Catalysis of Radical Thiol-Ene
Reactions. J. Org. Chem. 2013, 78, 2046–2050. (b) Tyson, E.
L.; Niemeyer, Z. L.; Yoon, T. P. Redox Mediators in Visible
light Photocatalysis: Photocatalytic Radical Thiol–Ene
Additions. J. Org. Chem. 2014, 79, 1427–1436. (c) Keylor, M.
H.; Park, J. E.; Wallentin, C.-J.; Stephenson, C. R. J.
Photocatalytic initiation of thiol–ene reactions: synthesis of
thiomorpholine-3-ones. Tetrahedron 2014, 70, 4264–4269. (d)
Teders, M.; Henkel, C.; Anhäuser, L.; Strieth-Kalthoff, F.;
Gómez-Suárez, A.; Kleinmans, R.; Kahnt, A.; Rentmeister, A.;
Guldi, D.; Glorius, F. The energy-transfer-enabled
biocompatible disulfide-ene reaction. Nat. Chem. 2018, 10,
981–988.
19. For
a review on radical-nucleophilic substitution (SRN)
reactions, see: Rossi, R. A.; Pierini, A. B.; Peñéñory, A. B.
Nucleophilic Substitution Reactions by Electron Transfer.
Chem. Rev. 2003, 103, 71–167.
20. See the supporting information for redox potentials of several
heteroarenes used in this study which were obtained by DFT
calculations. The potentials are generally E1/2 << −1.5 V which
does not account for a reduction by the photocatalyst employed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
in this study (E1/2(M+/M*)
= =
−0.89 V, E1/2(M/M−)
.
21. For reviews on site-selective cross-coupling reactions of multi-
halogenated heteroarenes, see: (a) Schröter, S.; Stock, C.;
Bach, T. Regioselective cross-coupling reactions of multiple
halogenated nitrogen-, oxygen-, and sulfur-containing
heterocycles. Tetrahedron 2005, 61, 2245–2267. (b) Fairlamb,
I. J. S. Regioselective (site-selective) functionalisation of
unsaturated halogenated nitrogen, oxygen and sulfur
heterocycles by Pd-catalysed cross-couplings and direct
arylation processes. Chem. Soc. Rev. 2007, 36, 1036–1045. (c)
Almond-Thynne, J.; Blakemore, D. C.; Pryde, D. C.; Spivey,
A. C. Site-selective Suzuki-Miyaura coupling of heteroaryl
halides – understanding the trends for pharmaceutically
important classes. Chem. Sci. 2017, 8, 40–62.
15. (a) Yoon, T. P.; Ischay, M. A.; Du, J. Visible light
photocatalysis as
a greener approach to photochemical
synthesis. Nat. Chem. 2010, 2, 527–532. (b) Narayanam, J. M.
R.; Stephenson, C. R. J. Visible light photoredox catalysis:
applications in organic synthesis. Chem. Soc. Rev. 2011, 40,
102–113. (c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C.
Visible Light Photoredox Catalysis with Transition Metal
Complexes: Applications in Organic Synthesis. Chem. Rev.
2013, 113, 5322−5363. (d) Skubi, K. L.; Blum, T. R.; Yoon, T.
P. Dual Catalysis Strategies in Photochemical Synthesis.
Chem. Rev. 2016, 116, 10035−10074. (e) Romero, N. A.;
Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev.
2016, 116, 10075–10166. (f) Twilton, J.; Le, C.; Zhang, P.;
Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. The merger
of transition metal and photocatalysis. Nat. Rev. Chem. 2017,
1, 0052.
22. Pitzer, L.; Schäfers, F.; Glorius, F. Rapid Assessment of the
Reaction-Condition-Based
Sensitivity
of
Chemical
Transformations. Angew. Chem., Int. Ed. 2019, 58, 8572–8576.
23. For more detailed information regarding reactivity of C3/C4-
halogenated heteroarenes as well as further limitation studies,
see the supporting information.
24. (a) Collins, K. D.; Glorius, F. A robustness screen for the rapid
assessment of chemical reactions. Nat. Chem. 2013, 5, 597–
601. (b) Gensch, T.; Teders, M.; Glorius, F. Approach to
Comparing the Functional Group Tolerance of Reactions. J.
Org. Chem. 2017, 82, 9154–9159. (c) Gensch, T.; Glorius, F.
The straight dope on the scope of chemical reactions. Science
2016, 352, 294–295.
16. Wimmer, A.; König, B. Photocatalytic formation of carbon–
sulfur bonds. Beilstein J. Org. Chem. 2018, 14, 54–83.
25. See the supporting information for a more detailed study
including the comparison to a photoredox-nickel dual-catalytic
coupling reaction.
17. For examples of photoredox-nickel dual-catalytic C–S bond
formations, see: (a) Oderinde, M. S.; Frenette, M.; Robbins, D.
W.; Aquila, B.; Johannes, J. W. Photoredox Mediated Nickel
Catalyzed Cross-Coupling of Thiols With Aryl and Heteroaryl
Iodides via Thiyl Radicals. J. Am. Chem. Soc. 2016, 138, 1760–
1763. (b) Jouffroy, M.; Kelly, C. B.; Molander, G. A.
Thioetherification via Photoredox/Nickel Dual Catalysis. Org.
Lett. 2016, 18, 876–879. (c) Vara, B. A.; Li, X.; Berritt, S.;
Walters, C. R.; Petersson, E. J.; Molander, G. A. Scalable
thioarylation of unprotected peptides and biomolecules under
Ni/photoredox catalysis. Chem. Sci. 2018, 9, 336 – 344. (d) Du,
Y.; Pearson, R. M.; Lim C.-H.; Sartor, S. M.; Ryan, M. D.;
Yang, H.; Damrauer, N. H.; Miyake, G. M. Strongly Reducing,
Visible-Light Organic Photoredox Catalysts as Sustainable
Alternatives to Precious Metals. Chem. Eur. J. 2017, 23,
10962–10968. (e) Santandrea, J.; Minozzi, C.; Cruché, C.;
Collins, S. K. Photochemical Dual-Catalytic Synthesis of
Alkynyl Sulfides. Angew. Chem., Int. Ed. 2017, 56, 12255 –
12259.
18. For examples of photoredox-catalytic C–S bond formations
involving reduction of aryl halides or aryl diazonium salts, see:
(a) Majek, M.; von Wangelin, A. J. Organocatalytic visible
light mediated synthesis of aryl sulfides. Chem. Commun.
2013, 49, 5507–5509. (b) Bottecchia, C.; Rubens, M.; Gunnoo,
S. B.; Hessel, V.; Madder, A.; Noël, T. Visible-Light-Mediated
Selective Arylation of Cysteine in Batch and Flow. Angew.
Chem., Int. Ed. 2017, 56, 12702–12707. (c) Jiang, M.; Li, H.;
Yang, H.; Fu, H. Room-Temperature Arylation of Thiols:
26. (a) Forouhar, F.; Arragain, S.; Atta, M.; Gambarelli, S.;
Mouesca, J.-M.; Hussain, M.; Xiao, R.; Kieffer-Jaquinod, S.;
Seetharaman, J.; Acton, T. B.; Montelione, G. T.; Mulliez, E.;
Hunt, J. F.; Fontecave, M. Two Fe-S clusters catalyze sulfur
insertion by radical-SAM methylthiotransferases. Nat. Chem.
Biol. 2013, 9, 333–338. (b) Takahashi, N.; Wei, F.-Y.;
Watanabe, S.; Hirayama, M.; Ohuchi, Y.; Fujimura, A.;
Kaitsuka, T.; Ishii, I.; Sawa, T.; Nakayama, H.; Akaike, T.;
Tomizawa, K. Reactive sulfur species regulate tRNA
methylthiolation and contribute to insulin secretion. Nucleic
Acids Res. 2017, 45, 435–445. (c) Kowalak, J. A.; Walsh, K.
A. β-Methylthio-aspartic acid: Identification of a novel
posttranslational modification in ribosomal protein S12 from
Escherichia coli. Protein Sci. 1996, 5, 1625–1632.
27. In a previous study from our group, in-depth mechanistic
studies including transient absorption spectroscopy proved that
disulfides quench the photocatalyst PC-1 via an energy transfer
mechanism to generate thiyl radicals.14d This was used to
replace thiols in thiol-ene reactions. For a more detailed
mechanistic discussion, see the supporting information.
28. For an example of the photoredox-catalytic methylthiolation of
aryl iodides involving reduction of the aryl halide, see: Czyz,
M. L.; Weragoda, G. K.; Monaghan, R.; Connell, T. U.;
Brzozowski, M.; Scully, A. D.; Burton, J.; Lupton, D. W.;
Polyzos, A. A visible-light photocatalytic thiolation of aryl,
heteroaryl and vinyl iodides. Org. Biomol. Chem. 2018, 16,
1543–1551.
ACS Paragon Plus Environment