Inorganic Chemistry
Communication
(10) Adamson, I. Y. R. Pulmonary toxicity of bleomycin. Environ.
Health Perspect. 1976, 16, 119−126.
AUTHOR INFORMATION
■
Corresponding Author
(11) Zhou, D.; Shao, L.; Spitz, D. R. Reactive Oxygen Species in
Normal and Tumor Stem Cells. Adv. Cancer Res. 2014, 122, 1−67.
(12) (a) Nogueira, V.; Hay, N. Molecular Pathways: Reactive
Oxygen Species Homeostasis in Cancer Cells and Implications for
Cancer Therapy. Clin. Cancer Res. 2013, 19, 4309−4314. (b) Sza-
trowski, T. P.; Nathan, C. F. Production of Large Amounts of
hydrogen peroxide by Human Tumor Cells. Cancer Res. 1991, 51,
794−798.
ORCID
Notes
The authors declare no competing financial interest.
(13) (a) Aykin-Burns, N.; Ahmad, I. M.; Zhu, Y.; Oberley, L. W.;
Spitz, D. R. Increased levels of superoxide and H2O2 mediate the
differential susceptibility of cancer cells versus normal cells to glucose
deprivation. Biochem. J. 2009, 418, 29−37. (b) Ishii, N.; Fujii, M.;
Hartman, P. S.; Tsuda, M.; Yasuda, K.; Senoo-Matsuda, N.; Yanase,
S.; Ayusawa, D.; Suzuki, K. A mutation in succinate dehydrogenase
cytochrome b causes oxidative stress and ageing in nematodes. Nature
1998, 394, 694−697.
ACKNOWLEDGMENTS
■
This work was supported by MEXT-Supported Program of the
Strategic Research Foundation at Private University, 2015−
2019.
(14) (a) Tu, C.; Shao, Y.; Gan, N.; Xu, Q.; Guo, Z. Oxidative DNA
Strand Scission Induced by a Trinuclear Copper(II) Complex. Inorg.
REFERENCES
■
(1) (a) Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.;
Marzano, C. Advances in Copper Complexes as Anticancer Agents.
Chem. Rev. 2014, 114, 815−862. (b) Kettenmann, S. D.; Louka, F. R.;
Marine, E.; Fischer, R. C.; Mautner, F. A.; Kulak, N.; Massoud, S. S.
Efficient Artificial Nucleases for Mediating DNA Cleavage Based on
Tuning the Steric Effect in the Pyridyl Derivatives of Tripod
Tetraamine-Cobalt(II) Complexes. Eur. J. Inorg. Chem. 2018, 2018,
2322−2338. (c) Dasari, S.; Bernard Tchounwou, P. Cisplatin in
cancer therapy: Molecular mechanism of action. Eur. J. Pharmacol.
2014, 740, 364−378. (d) Copeland, K. D.; Fitzsimons, M. P.; Houser,
R. P.; Barton, J. K. DNA Hydrolysis and Oxidative Cleavage by Metal-
Binding Peptides Tethered to Rhodium Intercalators. Biochemistry
2002, 41, 343−356.
(2) (a) Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. The Next
Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle
Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436−3486.
(b) Rosenberg, B. Fundamental Studies With Cisplatin. Cancer 1985,
55, 2303−2316.
(3) Kidani, Y.; Inagaki, K.; Iigo, M.; Hoshi, A.; Kuretani, K.
Antitumor activity of 1,2-diaminocyclohexaneplatinum complexes
against Sarcoma-180 ascites form. J. Med. Chem. 1978, 21, 1315−
1318.
́
́
Chem. 2004, 43, 4761−4766. (b) Gonzalez-Alvarez, M.; Alzuet, G.;
́
Borras, J.; Macías, B.; Castineiras, A. Oxidative Cleavage of DNA by a
̃
New Ferromagnetic Linear Trinuclear Copper(II) Complex in the
Presence of H2O2/Sodium Ascorbate. Inorg. Chem. 2003, 42, 2992−
2998. (c) Santra, B. K.; Reddy, P. A. N.; Neelakanta, G.; Mahadevan,
S.; Nethaji, M.; Chakravarty, A. R. Oxidative cleavage of DNA by a
dipyridoquinoxaline copper(II) complex in the presence of ascorbic
acid. J. Inorg. Biochem. 2002, 89, 191−196. (d) Borras, J.; Alzuet, G.;
Gonzalez-Alvarez, M.; Garcia-Gimenez, J. L.; Macias, B.; Liu-
Gonzalez, M. Efficient DNA Cleavage Induced by Copper(II)
Complexes of Hydrolysis Derivatives of 2,4,6-Tris(2-pyridyl)-1,3,5-
triazine in the Presence of Reducing Agents. Eur. J. Inorg. Chem. 2007,
2007, 822−834. (e) Vaidyanathan, V. G.; Nair, B. U. Oxidative
cleavage of DNA by tridentate copper (II) complex. J. Inorg. Biochem.
2003, 93, 271−276.
(15) (a) El Amrani, F. B. A.; Perello, L.; Real, J. A.; Gonzalez-
Alvarez, M.; Alzuet, G.; Borras, J.; Garcia-Granda, S.; Montejo-
Bernardo, J. Oxidative DNA cleavage induced by an iron(III)
flavonoid complex: Synthesis, crystal structure and characterization
of chlorobis(flavonolate)(methanol) iron(III) complex. J. Inorg.
Biochem. 2006, 100, 1208−1218. (b) Li, Q.; van den Berg, T. A.;
Feringa, B. L.; Roelfes, G. Mononuclear Fe(II)-N4Py complexes in
oxidative DNA cleavage: structure, activity and mechanism. Dalton
Trans 2010, 39, 8012−8021. (c) Roelfes, G.; Branum, M. E.; Wang,
L.; Que, L., Jr.; Feringa, B. L. Efficient DNA Cleavage with an Iron
Complex without Added Reductant. J. Am. Chem. Soc. 2000, 122,
11517−11518. (d) van den Berg, T. A.; Feringa, B. L.; Roelfes, G.
Double strand DNA cleavage with a binuclear iron complex. Chem.
Commun. 2007, 2, 180−182.
(4) McKeage, M. J. Lobaplatin: a new antitumor platinum drug.
Expert Opin. Invest. Drugs 2001, 10, 119−128.
(5) Shimada, M.; Itamochi, H.; Kigawa, J. Nedaplatin: a cisplatin
derivative in cancer chemotherapy. Cancer Manage. Res. 2013, 5, 67−
76.
(6) Jamieson, E. R.; Lippard, S. J. Structure, Recognition, and
Processing of Cisplatin-DNA Adducts. Chem. Rev. 1999, 99, 2467−
2498.
(16) (a) Sathyaraj, G.; Kiruthika, M.; Weyhermuller, T.; Unni Nair,
B. Oxidative Cleavage of DNA Ruthenium(II) Complexes Containing
a Ferrocene/Non-Ferrocene Conjugated Imidazole Phenol Ligand.
Organometallics 2012, 31, 6980−6987. (b) Mack, D. P.; Dervan, P. B.
Nickel-mediated sequence-specific oxidative cleavage of DNA by a
designed metalloprotein. J. Am. Chem. Soc. 1990, 112, 4604−4606.
(17) Kodera, M.; Kadoya, Y.; Aso, K.; Fukui, K.; Nomura, A.;
Hitomi, Y.; Kitagishi, H. Acceleration of Hydrolytic DNA Cleavage by
Dicopper(II) Complexes with p-Cresol-Derived Dinucleating Ligands
at Slightly Acidic pH and Mechanistic Insights. Bull. Chem. Soc. Jpn.
2019, 92, 739−747.
(18) (a) Rey, N. A.; Neves, A.; Bortoluzzi, A. J.; Pich, C. T.; Terenzi,
H. Catalytic Promiscuity in Biomimetic Systems: Catecholase-like
Activity, Phosphatase-like Activity, and Hydrolytic DNA Cleavage
Promoted by a New Dicopper(II) Hydroxo-Bridged Complex. Inorg.
Chem. 2007, 46, 348−350. (b) Amudha, P.; Kandaswamy, M.;
Govindasamy, L.; Velmurugan, D. Synthesis and Characterization of
New Symmetrical Binucleating Ligands and Their μ-Phenoxo-Bridged
Bicopper(II) Complexes: Structural, Electrochemical, and Magnetic
Studies. Inorg. Chem. 1998, 37, 4486−4492.
(7) Florea, A.-M.; Busselberg, D. Cisplatin as an Anti-Tumor Drug:
̈
Cellular Mechanisms of Activity, Drug Resistance and Induces Side
Effects. Cancers 2011, 3, 1351−1371.
(8) (a) Burger, R. M. Cleavage of Nucleic Acids by Bleomycin.
Chem. Rev. 1998, 98, 1153−1169. (b) Abraham, A. T.; Zhou, X.;
Hecht, S. M. DNA Cleavage by Fe(II)•Bleomycin Conjugated to a
Solid Support. J. Am. Chem. Soc. 1999, 121, 1982−1983. (c) Huang,
S.-X.; Feng, Z.; Wang, L.; Galm, U.; Wendt-Pienkowski, E.; Yang, D.;
Tao, M.; Coughlin, J. M.; Duan, Y.; Shen, B. A Designer Bleomycin
with Significantly Improved DNA Cleavage Activity. J. Am. Chem. Soc.
2012, 134, 13501−13509.
(9) (a) Decker, A.; Chow, M. S.; Kemsley, J. N.; Lehnert, N.;
Solomon, E. I. Direct Hydrogen-Atom Abstraction by Activated
Bleomycin: An Experimental and Computational Study. J. Am. Chem.
Soc. 2006, 128, 4719−4733. (b) Liu, L. V.; Bell, C. B., III; Wong, S.
D.; Wilson, S. A.; Kwak, Y.; Chow, M. S.; Zhao, J.; Hodgson, K. O.;
Hedman, B.; Solomon, E. I. Definition of the intermediates and
mechanism of the anticancer drug bleomycin using nuclear resonance
vibrational spectroscopy and related methods. Proc. Natl. Acad. Sci. U.
S. A. 2010, 107, 22419−22424.
D
Inorg. Chem. XXXX, XXX, XXX−XXX