J. Sa´nchez-Piso et al. / Inorganica Chimica Acta 328 (2002) 111–122
121
(Ax+Ay+Az)/3 for the superhyperfine interactions
show that the unpaired electron is more concentrated
on the equatorial nitrogen nuclei (Ao=25 MHz) than
on the apical nuclei (Ao=15 MHz), as expected from
the crystal data. The Az value for the hyperfine interac-
tion with the copper nuclear spin is smaller (Az=438
MHz, or 13.8 mT) than the values found in other
copper compounds containing nitrogen ligands [43–45].
This could be due to delocalization of the unpaired
electron over the six surrounding nitrogen atoms. The
unpaired electron could be described as occupying a
accord with a hexacoordinate environment around the
nickel atom.
Acknowledgements
We thank the X. de G. (Xuga 20302B97 and
PGIDT00PXI20305PR) for financial support.
References
dx
orbital mixed with the four in-plane p orbitals
2
2
−y
of the equatorial nitrogen atoms and a dz orbital
2
[1] T. Sogo, J. Romero, A. Sousa, A. de Blas, M.L. Dura´n, E.E.
Castellano, Z. Naturforsch. 43B (1988) 611.
[2] N.M. Atherton, D.E. Fenton, G.J. Hewson, C.H. McLean, R.
Bastida, J. Romero, A. Sousa, E.E. Castellano, J. Chem. Soc.,
Dalton. Trans. (1988) 1059.
[3] M.L. Dura´n, J.A. Garc´ıa-Va´zquez, A. Mac´ıas, J. Romero, A.
Sousa, E.B. Rivero, Z. Anorg. Allg. Chem. 573 (1989) 215.
[4] E. Labisbal, A. de Blas, J.A. Garc´ıa-Va´zquez, J. Romero, M.L.
Dura´n, A. Sousa, N.A. Bailey, D.E. Fenton, P.B. Leeson, R.V.
Parish, Polyhedron 11 (1992) 227.
[5] E. Labisbal, J.A. Garc´ıa-Va´zquez, J. Romero, A. Sousa, A.
Castin˜eiras, C. Maichle-Mo¨ssmer, U. Russo, Inorg. Chim. Acta
223 (1994) 87.
[6] E. Labisbal, J.A. Garc´ıa-Va´zquez, J. Romero, S. Picos, A.
Sousa, A. Castin˜eiras, C. Maichle-Mo¨ssmer, Polyhedron 14
(1995) 663.
[7] J. Castro, J. Romero, J.A. Garc´ıa-Va´zquez, M.L. Dura´n, A.
Castin˜eiras, A. Sousa, D.E. Fenton, J. Chem. Soc., Dalton
Trans. (1990) 3255.
[8] J.A. Castro, J. Romero, J.A. Garc´ıa-Va´zquez, A. Castin˜eiras,
M.L. Dura´n, A. Sousa, Z. Anorg. Allg. Chem. 615 (1992) 155.
[9] J.A. Castro, J. Romero, J.A. Garc´ıa-Va´zquez, M.L. Dura´n, A.
Sousa, E.E. Castellano, J. Zukerman-Schpector, Polyhedron 11
(1992) 235.
[10] J.A. Castro, J.E. Vilasa´nchez, J. Romero, J.A. Garc´ıa-Va´zquez,
M.L. Dura´n, A. Sousa, E.E. Castellano, J. Zukerman-Schpector,
Z. Anorg. Allg. Chem. 612 (1992) 83.
mixed with the pz orbitals of the apical nitrogen atoms.
The powder results, where the hyperfine lines are quite
collapsed, were simulated using Lorentzian or Gaussian
line shapes, as shown in Fig. 5(a). It should be noted
that in the low field region the Lorentzian lines gave the
best fit, whereas the Gaussian line shapes are better in
the high field region. As the dissolved sample do not
change ligands, the crystal packing needs to be respon-
sible of the collapsing of the hyperfine EPR lines. The
crystal structure shows that the hydrogen atoms H(11)
,
and H(16) are close, 2.62 and 2.56 A, respectively, to
the O(2) atom of the neighbouring molecule. These
interactions could provide a superexchange pathway
that induces the observed line collapse with an angular
dependence of the linewidth, as occurs in other crys-
talline copper compounds [46–48].
The solid state powder EPR spectra of the Ni com-
pound at room temperature are shown in Fig. 6(a and
b) (in the X- and Q-band, respectively). Broad non-re-
solved signals with resonance fields of 156.20 and
1103.60 mT can be observed at microwave frequencies
of 9371.91 and 34493.03 MHz, respectively. The spec-
trum can be explained as resulting from the ion in an
octahedral distorted symmetry where the energy levels
are lifted by zero field splitting terms. If axial symmetry
is assumed, the resonance frequencies will be given by
the expression:
[11] J.A. Castro, J. Romero, J.A. Garc´ıa-Va´zquez, A. Sousa, E.E.
Castellano, J. Zukerman-Schpector, Polyhedron 12 (1993) 31.
[12] J.A. Castro, J. Romero, J.A. Garc´ıa-Va´zquez, A. Mac´ıas, A.
Sousa, U. Englert, Polyhedron 12 (1993) 1391.
[13] J.A. Castro, J. Romero, J.A. Garc´ıa-Va´zquez, A. Sousa, A.
Castin˜eiras, J. Chem. Crystallogr. 24 (1994) 7.
[14] J.A. Castro, J. Romero, J.A. Garc´ıa-Va´zquez, A. Sousa, A.
Castin˜eiras, Acta Crystallogr. Sect. C 52 (1996) 2734.
[15] (a) E.S. Raper, Coord. Chem. Rev. 61 (1985) 115;
(b) E.S. Raper, Coord. Chem. Rev. 153 (1996) 199;
(c) E.S. Raper, Coord. Chem. Rev. 165 (1997) 475.
[16] J.A. Garc´ıa-Va´zquez, J. Romero, A. Sousa, Coord. Chem. Rev.
193–195 (1999) 691.
[17] P. Pe´rez-Lourido, J.A. Garc´ıa-Va´zquez, J. Romero, A. Sousa, E.
Block, K.P. Maresca, J. Zubieta, Inorg. Chem. 38 (1999) 538.
[18] P. Pe´rez-Lourido, J. Romero, J.A. Garc´ıa-Va´zquez, A. Sousa,
K.P. Maresca, J. Zubieta, Inorg. Chem. 38 (1999) 1293.
[19] P. Pe´rez-Lourido, J. Romero, J.A. Garc´ıa-Va´zquez, A. Sousa,
K.P. Maresca, J. Zubieta, Inorg. Chem. 38 (1999) 3709.
[20] J.A. Garc´ıa-Va´zquez, J. Romero, A. Sousa-Pedrares, M.S.
Louro, A. Sousa, J. Zubieta, J. Chem. Soc., Dalton Trans.
(2000) 559.
hw=D9giH
corresponding to the transition from the energy level
with m=0 to that with m= 91. In this expression h is
the Planck constant, i is the Bohr magneton, g is the
giromagnetic factor and D is a zero field splitting. On
using the values of the resonance fields at the X- and
Q-band, and assuming a value of g=2.0, a value of
D=0.167 cm−1 is obtained. D is less than the Zeeman
energy values (DBhw) at both microwave frequencies.
The solid state electronic spectrum for the nickel(II)
complex [NiL(phen)2] shows bands at approximately
10 500, 18 250 and 24 900 cm−1, which can be assigned
[21] L. Antolini, L.P. Battaglia, A. Bonamartini Corradi, G. Marcot-
rigiano, L. Menabue, G.C. Pellacani, J. Am. Chem. Soc. 107
(1985) 1369.
to the transitions A2g4T2g(w1), A2g4T1g (F) (w2)
3
3
3
and A2g4T1g(P) (w3), respectively [49]. This data is in