C O M M U N I C A T I O N S
Table 1. Epimerization to â-C-glycosidesa
Supporting Information Available: Experimental procedures and
1H, COSY, NOESY, and 13C NMR spectra of products (2, 4, 5, 7, 9,
11, 13, 14) and R-C-glycosides (10 and 12) (PDF). This material is
References
(1) (a) Postema, M. H. D. C-Glycoside Synthesis; CRC Press: London, 1995.
(b) Levy, D. E.; Tang, C. The Chemistry of C-Glycosides; Elsevier:
Tarrytown, NY, 1995.
(2) (a) Sears, P.; Wang, C.-H. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 12086-
12093. (b) Witczak, Z. J. Curr. Med. Chem. 1995, 1, 392-405. (c) Beau,
J.-M.; Vauzeilles, B.; Skrydstrup, T. In Glycoscience: Chemistry and
Chemical Biology; Fraser-Reid, B., Tatsuta, K., Thiem, J., Eds.;
Springer: Heidelberg, 2001; Vol. 3, pp 2679-2724.
(3) For reviews of C-glycoside synthesis: (a) Du, Y.; Linhardt, R. J.; Vlahov,
I. R. Tetrahedron, 1998, 54, 9913-9959. (b) Togo, H.; He, W.; Waki,
Y.; Yokoyama, M. Synlett 1998, 700-717. (c) Beau, J.-M.; Gallagher,
T. Top. Curr. Chem. 1997, 1-54. (d) Spencer, R. P.; Schwartz, J.
Tetrahedron, 2000, 56, 2103-2112. (e) Praly, J.-P. AdV. Carbohydr. Chem.
Biochem. 2000, 56, 115-126. For recent examples of C-glycoside
synthesis: (f) Carpintero, M.; Nieto, I.; Ferna´ndez-Mayoralas, A. J. Org.
Chem. 2001, 66, 1768-1774. (g) Ramnauth, J.; Poulin, O.; Bratovanov,
S. S.; Rakhit, S.; Maddaford, S. P. Org. Lett. 2001, 3, 2571-2573. (h)
SanMartin, R.; Tavassoli, B.; Walsh, K. E.; Walter, D. S.; Gallagher, T.
Org. Lett. 2000, 2, 4051-4054. (i) Rainier, J. D.; Cox, J. M. Org. Lett.
2000, 2, 2707-2709. (j) Cheng, X.; Khan, N.; Mootoo, D. R. J. Org.
Chem. 2000, 65, 2544-2547. (k) Bazin, H. G.; Du, Y.; Polat, T.; Linhardt,
R. J. J. Org. Chem. 1999, 64, 7254-7259. (l) Khan, N.; Cheng, X.;
Mootoo, D. R. J. Am. Chem. Soc. 1999, 121, 4918-4919. (m) Calimente,
D.; Postema, M. H. D. J. Org. Chem. 1999, 64, 1770-1771. (n) Spencer,
R. P.; Schwartz, J. J. Org. Chem. 1997, 62, 4204-4205.
(4) (a) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104,
4976-4978. (b) Streicher, H.; Reiner, M.; Schmidt, R. R. J. Carbohydr.
Chem. 1997, 16, 277-298. (c) Streicher, H.; Geyer, A.; Schmidt, R. R.
Chem. Eur. J. 1996, 2, 502-510. (d) Yang, W. B.; Wu, C. Y.; Chang, C.
C.; Wang, S. H.; Teo, C. F.; Lin, C. H. Tetrahedron Lett. 2001, 42, 6907-
6910. (e) Campbell, A. D.; Paterson, D. E.; Raynham, T. M.; Taylor, R.
J. K. Chem. Commun. 1999, 1599-1600. (f) Griffin, F. K.; Murphy, P.
V.; Paterson, D. E.; Taylor, R. J. K. Tetrahedron Lett. 1998, 39, 8179-
8182. (g) Belica, P. S.; Franck, R. W. Tetrahedron Lett. 1998, 39, 8225-
8228. (h) Molina, A.; Czernecki, S.; Xie, J. Tetrahedron Lett. 1998, 39,
7507-7510.
(5) (a) Dheilly, L.; Frechou, C.; Beaupere, D.; Uzan, R.; Demailly, G.
Carbohydr. Res. 1992, 224, 301-306. (b) Dawe, R. D.; Fraser-Reid, B.
J. Org. Chem. 1984, 49, 522-528. (c) Pougny, J. R.; Nassr, M. A. M.;
Sinay¨, P. J. Chem. Soc., Chem. Commun. 1981, 375-376. (d) Orhui, H.;
Jones, G. H.; Moffat, J. G.; Maddox, M. L.; Christensen, A. T.; Byram,
S. K. J. Am. Chem. Soc. 1975, 97, 4602-4613. (e) Hanessian, S.; Ogawa,
T.; Guindon, Y. Carbohydr. Res. 1974, 38, C12-14.
a Reagents and conditions: 5-10 equiv Zn(OAc)2 in 4% NaOMe/MeOH
at rt overnight. b Isolated yields with essentially one product based on TLC.
c Reduced (NaBH4) and acetylated.
uration of the 2-O-substituent do not affect the â-stereoselectivity
of this epimerization. Thus, this communication describes a novel
method for the synthesis of 2′-carbonylmethyl-â-C-glycosides,
which is particularly useful for the preparation of manno-â-C-
glycosides.
(6) By samarium-based approaches: (a) Miquel, N.; Doisneau, G.; Beau, J.-
M. Angew. Chem., Int. Ed. 2000, 39, 4111-4113. (b) Vlahov, I. R.;
Vlahova, P. I.; Lindhardt, R. J. J. Am. Chem. Soc. 1997, 119, 1480-
1481. (c) Huang, S.-C.; Wong, C.-H. Angew. Chem., Int. Ed. Engl. 1996,
35, 2671-2674. (d) Huang, S.-C.; Wong, C.-H. Tetrahedron Lett. 1996,
37, 4903-4906. (e) Mazeas, D.; Skrydstrup, T.; Beau, J.-M. Angew.
Chem., Int. Ed. Engl. 1995, 34, 909-912. By anhydrosugars: (f)
Leeuwenburgh, M. A.; Timmers, C. M.; van der Marel, G. A.; van Boom,
J. H.; Mallet, J.-M.; Sinay¨, P. G. Tetrahedron Lett. 1997, 38, 6251-6254.
(7) (a) Skrydstrup, T.; Beau, J.-M.; Elmouchir, M.; Mazeas, D.; Riche, C.;
Chiaroni, A. Chem. Eur. J. 1997, 3, 1342-1356. (b) Mazeas, D.;
Skrydstrup, T.; Doumeix, O.; Beau, J.-M. Angew. Chem., Int. Ed. Engl.
1994, 33, 1383-1386.
To illustrate the scope of this method, we extended this procedure
to 2′-ketones of R-C-glycosides. In the presence of Zn(OAc)2 and
NaOMe both 2′-ketones (10 and 12)14 were completely epimerized
to their â-anomers (entries 6 and 7). The products were isolated
without NaBH4 reduction and were consistent with the mechanism
as shown in Scheme 1.15 Although â-C-glycoside 13 from epimer-
ization of ketone 12 was isolated, the major product was 14, which
was formed by further Michael addition of MeO- to 13. Both
diastereomers were formed in this case in the ratio of 1:1 as
1
indicated by H NMR analysis.
(8) Praly, J.-P.; Chen, G.-R.; Gola, J.; Hetzer, G.; Raphoz, C. Tetrahedron
Lett. 1997, 47, 8185-8188.
The amount of Zn(OAc)2 used in the experiments (entry 4)
described above varied from 0.5 to 10 equiv and had no effect on
either the yield or stereoselectivity of the epimerization. Therefore,
this rearrangement probably proceeds using catalytic amounts of
Zn (II). However, the base used has to be strong enough to achieve
complete C1 epimerization.
In summary we have discovered a broadly applicable method
for the synthesis of 2′-carbonylalkyl-â-C-glycosides. This novel zinc
(II)-mediated epimerization has been applied to 2′-aldehydes and
2′-ketones of gluco-, galacto-, and manno-â-C-glycosides. Obvi-
ously, the utility of these functional groups may be further exploited.
The procedure described is very simple and reliable without use of
toxic and special reagents. This method may also be applied to the
epimerization of other pyranose compounds.
(9) Lo´pez-Herrera, F. J.; Sarabia-Garc´ıa, F.; Heras-Lo´pez, A.; Pino-Gonza´lez,
M. S. J. Org. Chem. 1997, 62, 6056-6059.
(10) Zou, W.; Wang, Z.; Laroix, E.; Wu, S.-H.; Jennings, H. J. Carbohydr.
Res. 2001, 334, 223-231.
(11) We observed that the â-C-glucoside 2 was obtained when the reduction
of aldehyde 1 was performed with an excess amount of NaBH4 and the
reaction was unusually slow (12 h, reflux) probably due to enolation. The
reduction was fast (0.5 h at rt) with less NaBH4 used, and only R-C-
glycoside (δH 4.25 ppm, H-1, J1, 6.5 Hz) was obtained.
2
(12) (a) van der Steen, F. H.; Kleijn, H.; Britovsck, G. J. P.; Jastrzebski, J. T.
B. H.; van Koten, G. J. Org. Chem. 1992, 57, 3906-3916. (b) Lorthiois,
E.; Marek, I.; Normant, J. F. J. Org. Chem. 1998, 63, 2442-2450.
(13) We also treated aldehydes (1 and 6) with 5% Zn in 1% NaOEt/EtOH.
After reduction (NaBH4) and acetylation (Ac2O/Py) epimerized products
(2 and 7) were also obtained in moderate yields (30-50%).
(14) Allyl 2,3,4,6-tetra-O-benzyl-R-C-galactopyranoside was treated with
Hg(OAc)2, the resultant 2′-alcohol was oxidized to ketone (10) using
DMSO-Ac2O. Another ketone 12 was synthesized from 3 in two steps:
(1) Grignard reaction (allylMgBr) and (2) DMSO-Ac2O oxidation.
(15) We have no spectroscopic data to support the intermediate structures and
stereochemistry illustrated in Scheme 1. However, the similar intermediates
have been previously reported (ref 5).
Acknowledgment. This is NRCC publication No.42449; this
work is supported in part by National Research Council of Canada
(to W.Z.) and National Science Council of Taiwan (to S.W.).
JA017430P
9
J. AM. CHEM. SOC. VOL. 124, NO. 10, 2002 2131