10.1002/cssc.201601490
ChemSusChem
FULL PAPER
2497-2500 ; (d) H. Zhou, G.-X. Wang, W.-Z. Zhang, X.-B. Lu,
ACS Catal. 2015, 5, 6773-6779.
K. Kobayashi, T. Kikuchi, S. Kitagawa, K. Tanaka, Angew.
Chem. Int. Ed. 2014, 53, 11813-11817.
differences between the Cu-based system and our Zn(salen)
system were listed as follows: The copper catalyst activated the
Si-H bond of PhSiH3 to form the active intermediate (Cu-H
bond), which made it more favorable for the insertion of CO2.
Subsequently, the formoxysilane can react with the amine to
produce the final product. However, the Zn(salen) catalyst and
ionic liquid (IL) could activate the Si-H bond of PhSiH3 via
synergistic effect between Lewis base-transition metal center
(LB-TM). Subsequently, the active intermediate (Zn-H bond)
facilitated the insertion of CO2 to form the active silyl formats. In
particular, the reaction might proceed via nucleophilic attack of
halogen anion with ILs on the hydrosilane and the formation of
the hypervalent silicon intermediate. Thus, considering the
excellent fluoride effect originated from the strong nucleophilic
ability, the synergistic effect between metal center and fluorine
anion was underway in our laboratory.
[6]
[7]
(a) X. Cui, Y. Zhang, Y. Deng, F. Shi, Chem. Commun. 2014
,
50, 189-191; (b) X. Cui, Y. Zhang, Y. Deng, F. Shi, Chem.
Commun. 2014, 50, 13521-13524.
K. Kon, S. M. A. H. Siddiki, W. Onodera, K.-i. Shimizu, Chem.
Eur. J. 2014, 20, 6264-6267.
(a) G. Tang, H.-L. Bao, C. Jin, X.-H. Zhong, X.-L. Du, RSC
Adv. 2015, 5, 99678-99687; (b) X.-L. Du, G. Tang, H.-L. Bao,
Z. Jiang, X.-H. Zhong, D. S. Su, J.-Q. Wang, ChemSusChem
2015, 8, 3489-3496.
(a) Q.-Y. Bi, J.-D. Lin, Y.-M. Liu, S.-H. Xie, H.-Y. He, Y. Cao,
Chem. Commun. 2014, 50, 9138-9140; (b) K. Park, G. H.
Gunasekar , N. Prakash, K.-D. Jung, S. Yoon,
ChemSusChem 2015, 8, 3410-3413.
[8]
[9]
[10]
[11]
(a) X. Cui, X. Dai, Y. Zhang, Y. Deng, F. Shi, Chem. Sci.
2014, 5, 649-655; (b) S. Kumar, S. L. Jain, RSC Adv. 2014
,
4, 64277-64279.
S. Q. Zhang, Q. Q. Mei, H. Y. Liu, H. Z. Liu, Z. P. Zhang, B.
X. Han, RSC Adv. 2016, 6, 32370-32373.
X. Frogneux, O. Jacquet, T. Cantat, Catal. Sci. Technol.
2014, 4, 1529-1533.
F. J. Fernandez-Alvarez, A. M. Aitani, L. A. Oro, Catal. Sci.
Technol. 2014, 4, 611-624.
C. Das Neves Gomes, O. Jacquet, C. Villiers, P. Thuéry, M.
Ephritikhine, T. Cantat, Angew. Chem. Int. Ed. 2012, 51,
187-190.
O. Jacquet, C. Das Neves Gomes, M. Ephritikhine, T. Cantat,
J. Am. Chem. Soc. 2012, 134, 2934-2937.
(a) B. J. Wang, Z. X. Cao, RSC Adv. 2013, 3, 14007-14015;
(b) Q. H. Zhou, Y. X. Li, J. Am. Chem. Soc. 2015, 137,
10182-10189.
T. V. Q. Nguyen, W.-J. Yoo, S. Kobayashi, Angew. Chem.
Int. Ed. 2015, 127, 9341-9344.
[12]
[13]
[14]
[15]
Conclusions
In summary, the binary and bifunctional Zn(salen) catalytic
system catalyzed the solvent-free N-formylation reactions of
amines using CO2 and hydrosilanes to produce formamide
derivatives for the first time. The reactions can proceed under
mild conditions due to the excellent synergistic effects, which
could activate the Si−H bond of hydrosilane to form the silyl
formats in situ-generated by metal-catalyzed hydrosilylation.
Additionally, the IL-based catalysts can be easily recyclable and
reused for five times without significant loss of activity and
selectivity. In order to understand the reaction mechanism,
further studies are underway in our laboratory.
[16]
[17]
[18]
[19]
[20]
C. C. Chong, R. Kinjo, Angew. Chem. Int. Ed. 2015, 127,
12284-12288.
(a) K. Motokura, N. Takahashi, D. Kashiwame, S.
Yamaguchi, A. Miyaji, T. Baba, Catal. Sci. Technol. 2013, 3,
2392-2396; (b) K. Motokura, N. Takahashi, A. Miyaji, Y.
Sakamoto, S. Yamaguchi, T. Baba, Tetrahedron 2014, 70,
6951-6956.
[21]
[22]
[23]
[24]
[25]
L. D. Hao, Y. F. Zhao, B. Yu, Z. Z. Yang, H. Y. Zhang, B. X.
Han, X. Gao, Z. M. Liu, ACS Catal. 2015, 5, 4989-4993.
H. Lv, Q. Xing, C. T. Yue, Z. Q. Lei, F. W. Li, Chem.
Commun. 2016, 52, 6545-6548.
J. L. Song, B. W. Zhou, H. Z. Liu, C. Xie, Q. L. Meng, Z. R.
Zhang, B. X. Han, Green Chem. 2016, 18, 3956–3961.
C. Fang, C. Lu, M. Liu, Y. Zhu, Y. Fu, B.-L. Lin, ACS Catal.
2016, 10.1021/acscatal.6b01856.
(a) Z. Z. Yang, B. Yu, H. Y. Zhang, Y. F. Zhao, G. P. Ji, Z. M.
Liu, RSC Adv. 2015, 5, 19613-19619; (b) B. Dong, L. Y.
Wang, S. Zhao, R. Ge, X. D. Song, Y. Wang, Y. N. Gao,
Chem. Commun. 2016, 52, 7082-7085
(a) S. Park, D. Bézier, M. Brookhart, J. Am. Chem. Soc.
2012, 134, 11404-11407; (b) W. Sattler, G. Parkin, J. Am.
Chem. Soc. 2012, 134, 17462-17465.
Acknowledgements
This work was supported by the National Science for
Distinguished Young Scholars of China (No. 21425627), the
National Natural Science Foundation of China (No. 21676306),
the Natural Science Foundation of Guangdong Province (Nos.
2016A030310211
and
2015A030313104),
and
the
Fundamental Research Funds for the Central Universities of
Sun Yat-sen University. The authors also thank Guangdong
Technology Research Center for Synthesis and Separation of
Thermosensitive Chemicals and Huizhou Research Institute of
Sun Yat-sen University.
[26]
[27]
(a) R. C. Luo, X. T. Zhou, S. Y. Chen, Y. Li, L. Zhou, H. B. Ji,
Green Chem. 2014, 16, 1496-1506; (b) R. C. Luo, X. T. Zhou,
W. Y. Zhang, Z. X. Liang, J. Jiang, H. B. Ji, Green Chem.
2014, 16, 4179-4189.
[28]
[29]
Y. Li, C. Hou, J. Jiang, Z. Zhang, C. Zhao, A. J. Page, Z. Ke,
ACS Catal. 2016, 6, 1655-1662.
Keywords: CO2 Reduction • Salen Zinc • N-formylation •
Cooperative Catalysis • Ionic Liquid
E. A. Jaseer, M. N. Akhtar, M. Osman, A. Al-Shammari, H. B.
Oladipo, K. Garces, F. J. Fernandez-Alvarez, S. Al-Khattaf, L.
A. Oro, Catal. Sci. Technol. 2015, 5, 274-279.
M. Hulla, F. D. Bobbink, S. Das, P. J. Dyson, ChemCatChem
2016, 10.1002/cctc.201601027, n/a-n/a.
X.-F. Liu, R. Ma, C. Qiao, H. Cao, L.-N. He, Chem. Eur. J.
2016, 10.1002/chem.201603688.
D. B. Nale, B. M. Bhanage, Synlett 2016, 27, A-E.
B. Yu, J.-N. Xie, C.-L. Zhong, W. Li, L.-N. He, ACS Catal.
2015, 5, 3940-3944.
References
[30]
[31]
[1]
[2]
A. Scott, Chem. Eng. News 2015, 93, 10-16.
Q. Liu, L. P. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015
6, 1-15.
,
[32]
[33]
[3]
[4]
[5]
T. Sakakura, J. C. Choi, H. Yasuda, Chem. Rev. 2007, 107,
2365-2387.
[34]
K. Motokura, M. Naijo, S. Yamaguchi, A. Miyaji, T. Baba,
Chem. Lett. 2015, 44, 1217–1219.
A. Tlili, E. Blondiaux, X. Frogneux, T. Cantat, Green Chem.
2015, 17, 157-168.
(a) V. B. Saptal, B. M. Bhanage, ChemSusChem 2016, 9,
1980-1985; (b) S. N. Riduan, J. Y. Ying, Y. Zhang, J. Catal.
2016, 10.1016/j.jcat.2015.09.009; (c) P. Dyson, S. Das, S.
Bulut, F. D. Bobbink, M. Soudani, Chem. Commun. 2016, 52,
This article is protected by copyright. All rights reserved.