Organic Letters
Letter
(g) Shiroodi, R. K.; Gevorgyan, V. Chem. Soc. Rev. 2013, 42, 4991.
(h) Crone, B.; Kirsch, S. F. Chem. - Eur. J. 2008, 14, 3514.
(4) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc.
2010, 132, 7645.
Scheme 8
(5) For other examples of the transition-metal-catalyzed intra-
molecular heterocyclization involving 1,2-silicon migration, see:
(a) Shiroodi, R. K.; Vera, C. I. R.; Dudnik, A. S.; Gevorgyan, V.
Tetrahedron Lett. 2015, 56, 3251. (b) Xia, Y.; Dudnik, A. S.; Li, Y.;
Gevorgyan, V. Org. Lett. 2010, 12, 5538. (c) Mochida, K.; Shimizu, M.;
Hiyama, T. J. Am. Chem. Soc. 2009, 131, 8350. (d) Dankwardt, J. W.
Tetrahedron Lett. 2001, 42, 5809.
anilines, leading to 3-silylindoles, via 1,2-silicon migration was
catalyzed by a cationic rhodium(I)/H8−BINAP complex.
Future work will focus on further exploration of the cationic
rhodium(I) complex-catalyzed cycloisomerization reactions
involving molecular rearrangements.
(6) Boyer, A.; Isono, N.; Lackner, S.; Lautens, M. Tetrahedron 2010,
66, 6468.
(7) A single example of the rhodium-catalyzed cycloisomerization of
a siloxy-linked 1,7-enyne was reported. The authors proposed that this
process proceeds via the rhodium vinylidene intermediate generated
through 1,2-silicon migration. See: Kim, H.; Lee, C. J. Am. Chem. Soc.
2005, 127, 10180.
(8) A single example of the rhodium-catalyzed cycloisomerization of
homopropargylic alcohols to dihydrofurans was reported. The authors
proposed that this process proceeds via the rhodium vinylidene
intermediate generated through 1,2-hydrogen migration. See: Trost, B.
M.; Rhee, Y. H. J. Am. Chem. Soc. 2003, 125, 7482.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
X-ray crystallographic file (CIF)
Experimental procedures and compound characterization
(9) Murayama, K.; Sawada, Y.; Noguchi, K.; Tanaka, K. J. Org. Chem.
2013, 78, 6202.
(10) The gas-phase thermal cycloisomerization (750 °C) of 2-
trimethylsilylethynyl phenol to 3-trimethylsilylbenzofuran involving
1,2-silicon migration was reported; see: Barton, T. J.; Groh, B. L. J.
Org. Chem. 1985, 50, 158.
(11) For the transition-metal-catalyzed intramolecular heterocycliza-
tion involving 1,2-germanium migration, see: Seregin, I. V.;
Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050.
(12) For the transition-metal-catalyzed intramolecular heterocycliza-
tion of aniline derivatives involving molecular rearrangements, see:
(a) Yeung, C. F.; Chung, L. H.; Lo, H. S.; Chiu, C. H.; Cai, J.; Wong,
C. Y. Organometallics 2015, 34, 1963. (b) Abbiati, G.; Marinelli, F.;
Rossi, E.; Arcadi, A. Isr. J. Chem. 2013, 53, 856.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported partly by ACT-C from JST (Japan)
and Grants-in-Aid for Scientific Research (Nos. 26102004 and
25105714) from MEXT (Japan). We thank Takasago Interna-
tional Corporation for the gift of Segphos and H8−BINAP and
Umicore for generous support in supplying the rhodium
complex.
(13) The normal cycloisomerization products, 2-silylindoles 9, were
detected in ca. 10−30% yields as byproducts.
(15) For the formation of rhodium vinylidenes from internal
silylacetylenes, see: (a) Katayama, H.; Onitsuka, K.; Ozawa, F.
Organometallics 1996, 15, 4642. (b) Werner, H.; Baum, M.; Schneider,
D.; Windmueller, B. Organometallics 1994, 13, 1089. (c) Werner, H.;
Schneider, D.; Schulz, M. J. Organomet. Chem. 1993, 451, 175.
(16) In the formation of rhodium vinylidene complexes from a 8-
quinolinolato rhodium(I) complex and terminal alkynes, stabilization
of the transition state by interaction between the oxygen atom and the
migrating hydrogen atom is proposed by the DFT calculation. See:
(a) Dang, Y.; Qu, S.; Wang, Z.-X.; Wang, X. Organometallics 2013, 32,
2804. For a report of the orginal reaction, see: (b) Kondo, M.; Kochi,
T.; Kakiuchi, F. J. Am. Chem. Soc. 2011, 133, 32.
(17) For examples of 2-lithiation followed by iodination of
benzofurans giving 2-iodobenzofurans, see: (a) Usui, S.; Hashimoto,
Y.; Morey, J. V.; Wheatley, A. E. H.; Uchiyama, M. J. Am. Chem. Soc.
2007, 129, 15102. (b) Zhang, H.; Larock, R. C. J. Org. Chem. 2002, 67,
7048.
REFERENCES
■
(1) For selected recent reviews of the transition-metal-catalyzed
cycloisomerization, see: (a) Fang, G.; Bi, X. Chem. Soc. Rev. 2015, 44,
8124. (b) Neff, R. K.; Frantz, D. E. Tetrahedron 2015, 71, 7.
(c) Michelet, V. In Comprehensive Organic Synthesis II; Knochel, P.,
Molander, G. A., Eds.; Elsevier: 2014; Vol. 5, p 1483. (d) Furstner, A.
̈
Acc. Chem. Res. 2014, 47, 925. (e) Keilitz, J.; Malik, H. A.; Lautens, M.
Top. Heterocycl. Chem. 2013, 32, 187. (f) Yamamoto, Y. Chem. Rev.
2012, 112, 4736. (g) Fehr, C. Synlett 2012, 23, 990. (h) Aubert, C.;
Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem. Rev.
2011, 111, 1954.
(2) For reviews of the transition-metal-catalyzed intramolecular
heterocyclization of alkynes and allenes, see: (a) Ayers, B. J.; Chan, P.
W. H. Synlett 2015, 26, 1305. (b) Mancuso, R.; Gabriele, B. Molecules
2014, 19, 15687. (c) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.;
Gevorgyan, V. Chem. Rev. 2013, 113, 3084. (d) Krause, N.; Winter, C.
Chem. Rev. 2011, 111, 1994. (e) Alcaide, B.; Almendros, P.; Alonso, J.
M. Org. Biomol. Chem. 2011, 9, 4405. (f) Weibel, J. M.; Blanc, A.; Pale,
P. Chem. Rev. 2008, 108, 3149.
(18) For examples of iodination of benzofurans by iodine
monochloride, giving 2-iodobenzofurans, see: Campo, M. A.; Larock,
R. C. J. Am. Chem. Soc. 2002, 124, 14326.
(3) For reviews of the transition-metal-catalyzed intramolecular
heterocyclization involving molecular rearrangements, see: (a) Jana,
N.; Driver, T. G. Org. Biomol. Chem. 2015, 13, 9720. (b) Egi, M.; Akai,
S. Heterocycles 2015, 91, 931. (c) To
̋ ́
rincsi, M.; Hornyanszky, G.;
Kolonits, P.; Novak, L. Period. Polytech., Chem. Eng. 2015, 59, 16.
́
(d) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953.
(e) Alcaide, B.; Almendros, P. Acc. Chem. Res. 2014, 47, 939.
(f) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902.
D
Org. Lett. XXXX, XXX, XXX−XXX