A. Sua´rez, A. Pizzano / Tetrahedron: Asymmetry 12 (2001) 2501–2504
2503
conditions (Table 1).16 Most noteworthy, the enantiose-
References
lectivity of the reaction is very sensitive to the ligand
employed. For instance, for compounds 6a–c, with
chirality based on the phosphite fragment, the nature of
the phosphine group has a profound effect on the
enantioselectivity of the reaction. Thus, the phenyl
derivative gives the product with an excellent enantiose-
lectivity (99.3%, entry 1), whereas the isopropyl com-
pound 6c produces an almost racemic product (entry 3)
and the methyl substituted complex 6b gives the methyl
succinate of opposite configuration, with a low enan-
tiomeric purity (30.8% ee, entry 2).17 Compound 6d,
which possesses a P-stereogenic phosphine fragment,
leads only to moderate enantioselectivity (49.2% ee,
entry 4). Remarkably, the best catalyst precursor 6a
shows also convenient reaction rates and it is able to
complete reactions at lower catalysts loadings (S/C=
3000–10000, entries 5 and 6) with excellent enantio-
selectivity (ee >99.5%).
1. A large variety of bifunctional ligands has been described
in the literature, but for the particular case of phosphines,
see for example: PꢀN ligands: (a) Alcock, N.; Hulmes, D.
I.; Brown, J. M. J. Chem. Soc., Chem. Commun. 1995,
395; (b) Wimmer, P.; Wildham, M. Tetrahedron: Asym-
metry 1995, 6, 657; PꢀO ligands: (c) Nandy, M.; Jin, J.;
RajanBabu, T. V. J. Am. Chem. Soc. 1999, 121, 9899; (d)
Uozumi, Y.; Tanahashi, A.; Lee, S.-Y.; Hayashi, T. J.
Org. Chem. 1993, 58, 1945; PꢀS ligands: (e) Hauptman,
E.; Fagan, P. J.; Marshall, W. Organometallics 1999, 18,
2061; PꢀP% ligands: (f) Ireland, T.; Grossheimann, G.;
Wieser-Jeunesse, C.; Knochel, P. Angew. Chem., Int. Ed.
1999, 38, 3212; (g) Ohashi, A.; Imamoto, T. Tetrahedron
Lett. 2001, 42, 1099.
2. For an illustrative example of the exploitation of a
bifunctional ligand on a catalytic process, see: Pre`tot, R.;
Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1998, 37, 323.
3. (a) Nozaki, K.; Sakai, N.; Nanno, T.; Higashijima, T.;
Mano, S.; Horiuchi, T.; Takaya, H. J. Am. Chem. Soc.
1997, 119, 4413; (b) Horiuchi, T.; Ohta, T.; Shirakawa,
E.; Nozaki, K.; Takaya, H. J. Org. Chem. 1997, 62, 4285.
4. (a) Deerenberg, S.; Schrekker, H. S.; Strijdonck, G. P. F.;
Kamer, P. C. J.; van Leeuwen, P. W. N. M. J. Org.
Chem. 2000, 65, 4810; (b) Deerenberg, S.; Kamer, P. C.
J.; van Leeuwen, P. W. N. M. Organometallics 2000, 19,
2065; (c) Deerenberg, S. Ph.D. Thesis; University of
Amsterdam: The Netherlands, 2000; (d) Pa`mies, O.;
Die´guez, M.; Net, G.; Ruiz, A.; Claver, C. Chem. Com-
mun. 2000, 2383; (e) Arena, C. G.; Dromni, D.; Faraone,
F. Tetrahedron: Asymmetry 2000, 11, 2765; (f) Kless, A.;
Holz, J.; Heller, D.; Kadyrov, R.; Selke, R.; Fischer, C.;
Bo¨rner, A. Tetrahedron: Asymmetry 1996, 7, 33; (g)
Nozaki, K.; Sato, N.; Tonomura, Y.; Yasutomi, M.;
Takaya, H.; Hiyama, T.; Matsubara, T.; Koga, N. J. Am.
Chem. Soc. 1997, 119, 12779; (h) Horiuchi, T.; Shi-
rakawa, E.; Nozaki, K.; Takaya, H. Tetrahedron: Asym-
metry 1997, 8, 57.
In summary, we have described a convenient prepara-
tion of a series of new chiral phosphine–phosphites
based on the easy demethylation of o-anisyl phosphi-
nes, a methodology applied for the first time to the
highly enantioselective synthesis of a P-stereogenic phe-
nol phosphine. The simplicity and flexibility of this
synthetic protocol allows the application of these lig-
ands in asymmetric catalysis following a modular
approach. By using this strategy, a significant catalyst
optimization has been achieved in enantioselective
dimethyl itaconate hydrogenation. The application of
these ligands in other enantioselective metal-catalyzed
processes is currently under progress.
Table 1. Results of the asymmetric hydrogenationsa
Entry
Cat. precursor
S/C
% ee (Config.)
1
2
3
4
6a
6b
6c
6d
6a
6a
500
500
500
500
3000
10000
99.3 (S)
30.8 (R)
1.8 (R)
49.2 (S)
99.8 (S)
99.6 (S)
5. Control of conformational mobility is a critical parame-
ter on ligand design. For example, see: Burk, M. J.;
Pizzano, A.; Mart´ın, J. M.; Liable-Sands, L.; Rheingold,
A. L. Organometallics 2000, 19, 250.
6. (a) Baker, M. J.; Pringle, P. J. Chem. Soc., Chem. Com-
mun. 1993, 314; (b) Kranich, R.; Eis, K.; Geis, O.; Mu¨hle,
S.; Bats, J. W.; Schmalz, H.-G. Chem. Eur. J. 2000, 6,
2874.
7. (a) Rauchfuss, T. B. Inorg. Chem. 1977, 16, 2966; (b)
Heinicke, J.; Kadyrov, R.; Kindermann, M. K.; Koesling,
M.; Jones, P. G. Chem. Ber. 1996, 129, 1547; (c) Schmut-
zler, R.; Schomburg, D.; Bartsch, R.; Stelzer, O. Z.
Naturforsch. 1984, 39, 1177.
5b
6b,c
a All reactions were completed under the conditions specified. Reac-
tions were carried out at room temperature under an initial H2
pressure of 4 atm and 0.2 M dichloromethane solutions of substrate
using the appropriate catalyst precursor for 17 h.
b 0.5 M substrate concentration, 5 atm initial pressure.
c 24 h reaction time (95% conversion after 17 h).
8. Greene, T. W. Protective Groups in Organic Synthesis;
John Wiley and Sons: New York, 1991.
9. Sembiring, S. B.; Colbran, S. B.; Craig, D. C. Inorg.
Chem. 1995, 34, 761.
Acknowledgements
10. For example see: (a) Juge´, S.; Ste´phan, M.; Laffitte, J. A.;
Genet, J. P. Tetrahedron Lett. 1990, 31, 6357; (b) Vedejs,
E.; Donde, Y. J. Am. Chem. Soc. 1997, 119, 2993.
11. (S)-3d. To a stirred solution of (S)-PAMP (0.17 g, 0.74
mmol) in CH2Cl2 (5 mL) cooled at −78°C was added
BBr3 (0.16 mL, 1.7 mmol) via syringe. The resulting
mixture was allowed to warm to room temperature and
We deeply acknowledge Professor E. Carmona for his
invaluable help on the development of this work. We
also thank Drs. M. L. Poveda and N. Khiar and
Professor M. A. Perica`s for helpful comments. We
acknowledge financial support from DGES (Grant No.
PB97-0732) and Chirotech. A.S. thanks the Junta de
Andaluc´ıa for a fellowship.