4
anode, dimerize to form disulfane C. The following
providing direct access to sulfinic esters in moderate to good
yields. This electrosynthesis process bypassed the use of any
metallic catalyst, base, and additive oxidant and was able to
take advantage of 6.0 equiv of alcohol as the coupling
counterpart. Detailed mechanism exploration and further
derivation of this electrochemical system are on the way in
our lab.
oxidation of C by O2 would lead to the generation of
thiosulfinates D, which would go through the nucleophilic
substitution process with alcohol to access target product. In
the meanwhile, the regenerated thiophenol should take part
in the next reaction cycle.
In conclusion, the electrochemical oxidative coupling
between alcohols and thiophenols has been achieved,26
Y. Li, Q. Yang, L. Yang, N. Lei and K. Zheng, Chem. Commun.,
2019, 55, 4981.
Acknowledgments
13. G. Laudadio, A. d. A. Bartolomeu, L. M. H. M. Verwijlen, Y.
Cao, K. T. de Oliveira and T. Noël, J. Am. Chem. Soc., 2019,
141, 11832.
We thank the financial support by the National Natural
Science Foundation of China (No. 21602141), Shihezi University
(funding to Y. W., CXRC201601).
14. G. Laudadio, E. Barmpoutsis, C. Schotten, L. Struik, S. Govaerts,
D. L. Browne and T. Noël, J. Am. Chem. Soc., 2019, 141, 5664.
15. A. Tapia-Pineda, C. Perez-Arrieta, C. Silva-Cuevas, E. Paleo and
J. A. Lujan-Montelongo, J. Chem. Educ., 2016, 93, 1470.
16. (a) J. Wei and Z. Sun, Org. Lett., 2015, 17, 5396; (b) H. M.
Peltier, J. W. Evans and J. A. Ellman, Org. Lett., 2005, 7, 1733;
(c) H.-J. Li, R. Wang, J. Gao, Y.-Y. Wang, D.-H. Luo and Y.-C.
Wu, Adv. Synth. Catal., 2015, 357, 1393; (d) L. Kadari, P. Radhaꢀ
Krishna and Y. LakshmiꢀPrapurna, Adv. Synth. Catal., 2016, 358,
3863.
17. J. Drabowicz, M. Kwiatkowska and P. Kiełbasiński, Synthesis,
2008, 2008, 3563.
18. (a) A. Tranquilino, S. R. C. P. Andrade, A. P. M. da Silva, P. H.
Menezes and R. A. Oliveira, Tetrahedron Lett., 2017, 58, 1265;
(b) M. Huang, L. Hu, H. Shen, Q. Liu, M. I. Hussain, J. Pan and
Y. Xiong, Green Chem., 2016, 18, 1874.
References
1. E. A. Ilardi, E. Vitaku and J. T. Njardarson, J. Med. Chem., 2014,
57, 2832.
2. (a) O. M. Mulina, A. I. Ilovaisky and A. O. Terent'ev, Eur. J.
Org. Chem., 2018, 2018, 4648; (b) D.-Q. Dong, S.-H. Hao, D.-S.
Yang, L.-X. Li and Z.-L. Wang, Eur. J. Org. Chem., 2017, 2017,
6576.
3. (a) S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe and
S. R. Waldvogel, Angew. Chem., Int. Ed., 2018, 57, 6018; (b) A.
Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes and S. R.
Waldvogel, Angew. Chem., Int. Ed., 2018, 57, 5594; (c) S. Tang,
Y. Liu and A. Lei, Chem, 2018, 4, 27; (d) Y. Jiang, K. Xu and C.
Zeng, Chem. Rev., 2018, 118, 4485; (e) M. Yan, Y. Kawamata
and P. S. Baran, Chem. Rev., 2017, 117, 13230.
19. B. Du, Z. Li, P. Qian, J. Han and Y. Pan, Chem. ‒ Asian J., 2016,
11, 478.
4. E. J. Horn, B. R. Rosen and P. S. Baran, ACS Cent. Sci., 2016, 2,
302.
20. (a) C. Zhou, Z. Tan, H. Jiang and M. Zhang, Green Chem., 2018,
20, 1992; (b) P. K. Shyam, Y. K. Kim, C. Lee and H.-Y. Jang,
Adv. Synth. Catal., 2016, 358, 56.
21. Q.-Y. Li, T. R. Swaroop, C. Hou, Z.-Q. Wang, Y.-M. Pan and
H.-T. Tang, Adv. Synth. Catal., 2019, 361, 1761.
22. X. Yang, Y. Bao, Z. Dai, Q. Zhou and F. Yang, Green Chem.,
2018, 20, 3727.
23. F. Yuste, A. Hernández Linares, V. M. Mastranzo, B. Ortiz, R.
Sánchez-Obregón, A. Fraile and J. L. García Ruano, J. Org.
Chem., 2011, 76, 4635.
24. R. P. Singh, G. Cao, R. L. Kirchmeier and J. n. M. Shreeve, J.
Org. Chem., 1999, 64, 2873.
25. (a) Q. Liu, L. Wang, H. Yue, J.-S. Li, Z. Luo and W. Wei, Green
Chem., 2019, 21, 1609; (b) X. Han, K. Wang, G. Zhang, W. Gao
and J. Chen, Adv. Synth. Catal., 2019, 361, 2804.
5. (a) P. Wang, S. Tang, P. Huang and A. Lei, Angew. Chem., Int.
Ed., 2017, 56, 3009; (b) Y. Yuan, Y. Cao, J. Qiao, Y. Lin, X.
Jiang, Y. Weng, S. Tang and A. Lei, Chin. J. Chem., 2019, 37,
49; (c) Q.-L. Yang, P. Fang and T.-S. Mei, Chin. J. Chem., 2018,
36, 338; For C–S bond construction from aryl halides, see: (d) D.
L., H.-X. Ma, P. Fang and T.-S. Mei, Angew. Chem., Int. Ed.,
2019, 58, 5033; (e) Y. Wang, L. Deng, X. Wang, Z. Wu, Y.
Wang and Y. Pan, ACS Catal. 2019, 9, 1630.
.
6. D. Li, S. Li, C. Peng, L. Lu, S. Wang, P. Wang, Y.-H. Chen, H.
Cong and A. Lei, Chem. Sci., 2019, 10, 2791.
7. T.-J. He, Z. Ye, Z. Ke and J.-M. Huang, Nature Comm., 2019,
10, 833.
8. S. Tang, Y. Liu, L. Li, X. Ren, J. Li, G. Yang, H. Li and B.
Yuan, Org. Biomol. Chem., 2019, 17, 1370.
26. During the preparation of this manuscript, a similar article was
published online on Sep. 23, 20193. C. Ai, H. Shen, D. Song, Y.
Li, X. Yi, Z. Wang, F. Ling, W. Zhong, Green Chem., 2019, 21,
5528. Later, on Oct. 7, 2019, we submitted our results on preprint
server ChemRxiv, DOI: 10.26434/chemrxiv.9945083.v1.
9. (a) V. M. Breising, T. Gieshoff, A. Kehl, V. Kilian, D.
Schollmeyer and S. R. Waldvogel, Org. Lett., 2018, 20, 6785; (b)
P. Huang, P. Wang, S. Tang, Z. Fu and A. Lei, Angew. Chem.,
Int. Ed., 2018, 57, 8115.
10. Z. Yang, Y. Shi, Z. Zhan, H. Zhang, H. Xing, R. Lu, Y. Zhang,
M. Guan and Y. Wu, ChemElectroChem, 2018, 5, 3619.
11. X. Zhang, T. Cui, Y. Zhang, W. Gu, P. Liu and P. Sun, Adv.
Synth. Catal., 2019, 361, 2014.
Supplementary Material
12. (a) C.-Y. Li, Y.-C. Liu, Y.-X. Li, D. M. Reddy and C.-F. Lee,
Org. Lett., 2019, 21, 7833DOI: 10.1021/acs.orglett.9b02825; (b)
The following files are available.Compound characterization,
1H and 13C NMR spectra (PDF).
☐The authors declare the following financial
interests/personal relationships which may be
considered as potential competing interests:
Declaration of interests
☒ The authors declare that they have no known
competing financial interests or personal
relationships that could have appeared to influence
the work reported in this paper.