Chemistry Letters Vol.32, No.8 (2003)
735
The catalyst, NaHSO4ꢁSiO2 can easily be prepared5 from
the readily available NaHSO4 and SiO2 (finer than 200 mesh)
and can properly be activated. Both the ingredients are inexpen-
sive and nonhazardous. The experimental procedure is simple
and the catalyst can easily be removed by filtration. From the
economic and ecological considerations the catalyst is highly
suitable to apply for cleavage of acetonides.
In conclusion, a novel, mild, and efficient method has been
developed for chemo- and regioselective deprotection of aceto-
nides using NaHSO4ꢁSiO2 as a heterogeneous catalyst. The op-
erational simplicity, excellent yields, availability of the inex-
pensive catalyst and high selectivity are the advantages of the
present protocol. We feel the method will find important appli-
cations in the selective cleavage of acetonides of polyhydroxy-
lated molecules.
(1977).
4
a) K. S. Kim, Y. H. Song, B. H. Lee, and C. S. Hahn, J.Org.
Chem., 51, 404 (1986). b) M. Iwata and H. Ohrui, Bull.
Chem.Soc.Jpn. , 54, 2837(1981). c) S. Vijayasaradhi, J.
Singh, and I. S. Aidhen, Synlett, 2000, 110. d) X. Xiao
and D. Bai, Synlett, 2001, 535.
5
6
G. W. Breton, J.Org.Chem. , 62, 8952 (1997).
Typical Experimental Procedure: To a solution of acetonide
(1 mmol) in CH2Cl2–isopropanol (4:1, 5 mL) NaHSO4ꢁSiO2
(100 mg) was added. The mixture was stirred at room tem-
perature and the reaction was monitored by TLC. After
completion, the mixture was filtered and the filtrate was
concentrated. The residue was subjected to column chroma-
tography over silica gel to obtain pure diol. The spectral da-
ta of some representative compounds are given below: 2c:
1H-NMR (200 MHz, CDCl3): d 5.80 (1H, m), 5.18-5.01
(2H, m), 4.97(1H, m), 4.64 (2H, s), 4.04 (1H, m), 3.78
(1H, m), 3.66-3.42 (5H, m), 3.38 (3H, s), 4.42-2.15 (2H,
m); FABMS: m=z 221 [M+1]þ. 2f: 1H-NMR (200 MHz,
CDCl3): d 6.15 (1H, s), 4.87(1H, dd, J ¼ 7:5, 6.0 Hz),
4.65 (1H, d, J ¼ 6:0 Hz), 4.04 (1H, m), 3.90 (1H, m), 3.78
(1H, d, J ¼ 11:5, 6.0 Hz), 3.62 (1H, m), 2.01 (3H, s), 1.34
The authors thank UGC and CSIR, New Delhi for financial
assistance.
References and Notes
1
Part 28 in the series, ‘‘Studies on Novel Synthetic Method-
ologies,’’ for Part 27see K. V. N. S. Srinivas, I. Mahender,
and B. Das, Adv.Synth.Catal. , (2003), submitted.
(3H, s), 1.23 (3H, s); FABMS: m=z 263 [M+1]þ. 2j: H-
1
2
a) T. W. Green, P. G. M. Wuts, ‘‘Protecting Groups in Or-
ganic Synthesis,’’ 2nd ed., Wiley, New York (1991). b) P. J.
Kocienski, ‘‘Protecting Groups,’’ Thieme, Stuttgart, New
York (1994).
NMR (200 MHz, CDCl3): d 7.38 (5H, m), 5.89 (1H, s),
4.78 (1H, d, J ¼ 7:5 Hz), 4.56-4.43 (2H, m), 4.05-3.97
(2H, m), 3.92 (1H, m), 3.78 (1H, dd, J ¼ 11:0, 5.5 Hz),
3.55 (1H, dd, J ¼ 11:0, 6.5 Hz); FABMS: m=z 311
1
3
a) G. W. J. Fleet and P. W. Smith, Tetrahedron Lett., 26,
1465 (1985). b) M. Gerspacher and H. Rapaport, J.Org.
Chem., 56, 3700 (1991). c) J. S. Yadav, M. C. Chander,
and K. K. Reddy, Tetrahedron Lett., 33, 135 (1992). d) S.
Manna, V. Jacques, Y. Pendri, and J. R. Falck, Tetrahedron
Lett., 27, 2679 (1986). e) Y. Lablanc, B. J. Fitzsimmons, J.
Adams, E. Perez, and J. Rokach, J.Org.Chem. , 51, 7 89
(1986). f) S. Baurle, S. Hoppen, and U. Koert, Angew.
Chem., Int. Ed., 38, 1263 (1999). g) A. Ichihara, M.
Ubukata, and S. Sakamura, Tetrahedron Lett., 18, 3473
[M+1]þ. 2k: H-NMR (200 MHz, CDCl3): d 5.86 (1H, d,
J ¼ 2:0 Hz), 4.73-4.64 (2H, m), 4.52 (1H, d, J ¼ 2:0 Hz),
4.10 (1H, m), 4.03 (1H, dd, J ¼ 9:0, 2.0 Hz), 3.86-3.75
(2H, m), 3.72 (1H, m), 3.38 (3H, s), 1.42 (3H, s), 1.21
(3H, s); FABMS: m=z 265 [M+1]þ 2n: 1H-NMR
(200 MHz, CDCl3): d 7.80 (2H, d, J ¼ 8 Hz), 7.32 (2H, d,
J ¼ 8:0 Hz), 5.81 (1H, d, J ¼ 2:0 Hz), 4.86 (1H, d,
J ¼ 2:0 Hz), 4.42 (1H, m), 4.02 (1H, dd, J ¼ 9:5, 2.0 Hz),
3.78-3.64 (2H, m), 3.58 (1H, m); FABMS: m=z 359
[M+1]þ.
Published on the web (Advance View) July 21, 2003; DOI 10.1246/cl.2003.734