10.1002/anie.202103674
Angewandte Chemie International Edition
RESEARCH ARTICLE
molecule regulators for different pathways. (b) Confocal images of cellular
aggregated proteome in HEK293T and HeLa cells upon proteostasis collapse
induced by the regulators. (c) Quantification of puncta number in stressed
HEK293T cells. Error bars: standard error (n=3). (d) Dose-dependent
fluorescent puncta number upon increasing cycloheximide concentration.
Puncta number was analyzed (n = 4, mean±SD; ****P <0.0001). Experiment
details see SI.
[6]
A. Aliyan, N. P. Cook, A. A. Marti, Chem. Rev. 2019, 119, 11819-
11856.
[7]
[8]
[9]
W. Tan, M. J. Donovan, J. Jiang, Chem. Rev. 2013, 113, 2842-2862.
L. Ge, Y. Tian, Anal. Chem. 2019, 91, 3294-3301.
P. Verwilst, H. R. Kim, J. Seo, N. W. Sohn, S. Y. Cha, Y. Kim, S.
Maeng, J. W. Shin, J. H. Kwak, C. Kang, J. S. Kim, J. Am. Chem.
Soc. 2017, 139, 13393-13403.
[10] P. Verwilst, H. S. Kim, S. Kim, C. Kang, J. S. Kim, Chem. Soc. Rev.
2018, 47, 2249-2265.
of fluorescent puncta imaged by E2 in stressed cells is dose-
dependent on the amount of protein synthesis inhibitor cyclo-
heximide (Figure 10d, S29), showing its potential as a quantitative
indicator of proteostasis network capacity. These phenotypic
observations urge us to develop suitable chemical tools that can
in-situ capture, distinguish, and regulate the contents inside
aggregated fraction of cellular proteome under different stresses
in the future.
[11] M. C. Heffern, P. T. Velasco, L. M. Matosziuk, J. L. Coomes, C.
Karras, M. A. Ratner, W. L. Klein, A. L. Eckermann, T. J. Meade,
Chembiochem 2014, 15, 1584-1589.
[12] A. Iscen, C. R. Brue, K. F. Roberts, J. Kim, G. C. Schatz, T. J. Meade,
J. Am. Chem. Soc. 2019, 141, 16685-16695.
[13] N. P. Cook, V. Torres, D. Jain, A. A. Marti, J. Am. Chem. Soc. 2011,
133, 11121-11123.
[14] N. P. Cook, M. Ozbil, C. Katsampes, R. Prabhakar, A. A. Marti, J.
Am. Chem. Soc. 2013, 135, 10810-10816.
[15] A. Aliyan, B. Kirby, C. Pennington, A. A. Marti, J. Am. Chem. Soc.
2016, 138, 8686-8689.
[16] B. Jiang, A. Aliyan, N. P. Cook, A. Augustine, G. Bhak, R.
Maldonado, A. D. Smith McWilliams, E. M. Flores, N. Mendez, M.
Shahnawaz, F. J. Godoy, J. Montenegro, I. Moreno-Gonzalez, A. A.
Marti, J. Am. Chem. Soc. 2019, 141, 15605-15610.
Conclusion
Unlike amyloid sensors, protein amorphous aggregation
sensors were seldom reported due to the lack of targeting
strategies. In this work, we have demonstrated how to derive
fluorescent sensors to selectively target protein amorphous
aggregates from crystal induced emission dicyanoisophorone
(DCI) scaffold. Via rational design and structure-fluorescence
study, we revealed structural features that regulate viscosity and
polarity sensitivity, binding affinity to aggregated proteins,
fluorescent color, and cellular performance. Our work not only
provides a facile tool to evaluate cellular proteostasis but also
complements the current lack of chemical strategies to target
intracellular protein aggregation. These key structural elements
revealed herein may serve as guiding groups to facilitate further
design of imaging sensors, proteomics probes, and therapeutic
reagents for amorphous aggregated proteins.
[17] J. Lee, E. K. Culyba, E. T. Powers, J. W. Kelly, Nat. Chem. Biol.
2011, 7, 602.
[18] P. J. Salveson, S. Haerianardakani, A. Thuy-Boun, S. Yoo, A. G.
Kreutzer, B. Demeler, J. S. Nowick, J. Am. Chem. Soc. 2018, 140,
11745-11754.
[19] J. M. Goldberg, S. Batjargal, B. S. Chen, E. J. Petersson, J. Am.
Chem. Soc. 2013, 135, 18651-18658.
[20] Y. Hong, J. W. Lam, B. Z. Tang, Chem. Commun. 2009, 4332-4353.
[21] Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011.
[22] Y. Hong, L. Meng, S. Chen, C. W. Leung, L. T. Da, M. Faisal, D. A.
Silva, J. Liu, J. W. Lam, X. Huang, B. Z. Tang, J. Am. Chem. Soc.
2012, 134, 1680-1689.
[23] H. B. Cheng, Y. Li, B. Z. Tang, J. Yoon, Chem. Soc. Rev. 2020, 49,
21-31.
[24] W. Fu, C. Yan, Z. Guo, J. Zhang, H. Zhang, H. Tian, W. H. Zhu, J.
Am. Chem. Soc. 2019, 141, 3171-3177.
[25] E. Y. Zhou, H. J. Knox, C. J. Reinhardt, G. Partipilo, M. J. Nilges, J.
Chan, J. Am. Chem. Soc. 2018, 140, 11686-11697.
[26] L. P. Smaga, N. W. Pino, G. E. Ibarra, V. Krishnamurthy, J. Chan,
J. Am. Chem. Soc. 2020, 142, 680-684.
Probe synthesis, supporting figures, experimental methods in the
Supporting Information.
[27] A. K. Yadav, C. J. Reinhardt, A. S. Arango, H. C. Huff, L. Dong, M.
G. Malkowski, A. Das, E. Tajkhorshid, J. Chan, Angew. Chem. Int.
Ed. 2020, 59, 3307-3314.
Acknowledgements
[28] C. S. Wijesooriya, J. A. Peterson, P. Shrestha, E. J. Gehrmann, A.
H. Winter, E. A. Smith, Angew. Chem. Int. Ed. 2018, 57, 12685-
12689.
This work was supported, in part, by funds National Natural Sci-
ence Foundation of China (21907091), the LiaoNing
Revitalization Talents Program from the Liaoning province of
China (XLYC1907048), China Postdoctoral Science Foundation
[29] J. A. Peterson, C. Wijesooriya, E. J. Gehrmann, K. M. Mahoney, P.
P. Goswami, T. R. Albright, A. Syed, A. S. Dutton, E. A. Smith, A. H.
Winter, J. Am. Chem. Soc. 2018, 140, 7343-7346.
Grant
(2019M661138),
Dalian
Innovation
Fund
[30] J. Tang, M. A. Robichaux, K. L. Wu, J. Pei, N. T. Nguyen, Y. Zhou,
T. G. Wensel, H. Xiao, J. Am. Chem. Soc. 2019, 141, 14699-14706.
[31] J. V. Jun, E. J. Petersson, D. M. Chenoweth, J. Am. Chem. Soc.
2018, 140, 9486-9493.
(2020JJ26GX027), Pfizer ASPIRE award for transthyretin
amyloidosis basic research, The Taishan Scholars Project of
Shandong Province (no.tsqn201909017).
[32] J. V. Jun, D. M. Chenoweth, E. J. Petersson, Org. Biomol. Chem.
2020, 18, 5747-5763.
Keywords: aggregation induced emission, protein aggregation,
[33] G. Lukinavicius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang,
T. Plass, V. Mueller, L. Reymond, I. R. Correa, Jr., Z. G. Luo, C.
Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, K.
Johnsson, Nat. Chem. 2013, 5, 132-139.
fluorescence, sensors, protein homeostasis
[1]
[2]
[3]
F. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2006, 75, 333-366.
M. Stefani, Biochim. Biophys. Acta. 2004, 1739, 5-25.
W. E. Balch, R. I. Morimoto, A. Dillin, J. W. J. s. Kelly, Science 2008,
319, 916-919.
[34] M. Z. Chen, N. S. Moily, J. L. Bridgford, R. J. Wood, M. Radwan, T.
A. Smith, Z. Song, B. Z. Tang, L. Tilley, X. Xu, G. E. Reid, M. A.
Pouladi, Y. Hong, D. M. Hatters, Nat. Commun. 2017, 8, 474.
[35] S. Zhang, M. Liu, L. Y. F. Tan, Q. Hong, Z. L. Pow, T. C. Owyong,
S. Ding, W. W. H. Wong, Y. Hong, Chem. Asian. J. 2019, 14, 904-
909.
[4]
[5]
F. U. Hartl, Annu. Rev. Biochem. 2017, 86, 21-26.
F. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2017, 86, 27-68.
8
This article is protected by copyright. All rights reserved.