J. S. Yada6 et al. / Tetrahedron Letters 44 (2003) 387–389
389
HgCl2, CaCO3 resulted in the key intermediate 2 in 80%
yield. Compound 2 was transformed to the target
molecule 118 by photooxidation followed by acid
hydrolysis with 70% HClO4 as reported by Zhou et al.6
The synthetic material was found to be identical with
natural artemisinin in every respect (1H NMR, IR,
Mass, TLC and [h]D).
9. Liu, H. J.; Yeh, W. L.; Chew, S. Y. Tetrahedron Lett.
1993, 34, 4435–4438.
10. (a) Zweifel, G.; Ayyangar, N. R.; Brown, H. C. J. Am.
Chem. Soc. 1963, 85, 2072–2075; (b) Brown, H. C.;
Kulkarni, S. V.; Khann, V. V.; Racherla, V. J. Org.
Chem. 1992, 57, 6173–6177.
11. Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedors,
B. C. L. J. Chem. Soc. 1946, 39–45.
In conclusion, we have accomplished a highly efficient
and stereoselective total synthesis of (+)-artemisinin 1.
Our approach presents several advantages such as sta-
bility and availability of the starting material, high
yielding reactions and high stereoselectivity. Further,
the approach involves less steps compared to other
reported methods; hence we believe that the method
can be a valuable route for the synthesis of (+)-
artemisinin 1.
12. House, H. O.; Carlson, R. G.; Babad, H. J. Org. Chem.
1963, 28, 3359–3361.
13. Chavan, S. P.; Kharul, R. K.; Sharma, A. K.; Chavan, S.
P. Tetrahedron: Asymmetry 2001, 12, 2985–2988.
14. (a) Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188–194;
(b) Ballestri, M.; Chatgilialoglu, C.; Clark, K. B.; Griller,
D.; Giese, B.; Kopping, B. J. Org. Chem. 1991, 56,
678–683.
15. Spectral data for 11: 1H NMR (200 MHz, CDCl3): l 0.98
(d, J=6.2 Hz, 3H, CH3), 1.14 (d, J=7.1 Hz, 3H, CH3),
1.17–1.29 (m, 2H, CH2), 1.37–1.43 (m, 1H), 1.56–1.75 (m,
4H, CH2), 1.76 (s, 3H, CH3), 1.82–1.93 (m, 2H, CH2),
2.12–2.19 (m, 1H, CH2CH(CH)CH), 2.22–2.27 (m, 1H,
OCHCH), 2.73–2.79 (m, 1H, OCCHCH3), 3.28–3.48 (m,
4H, SCH2CH2S), 4.38 (t, J=3.2 Hz, 1H, OCH). MS (EI):
315 (M+1). IR (neat): 1780 cm−1. Anal. calcd for
C16H26O2S2: C, 61.11; H, 8.33. Found: C, 61.08; H, 8.28.
Optical rotation [h]D: +32.10 (c 1.0, CHCl3).
Acknowledgements
We thank Malti-Chem Research Center, Baroda for
providing the starting material (+)-isolimonene. R.S.B.
thanks CSIR, New Delhi for the award of fellowship.
16. Spectral data for 13: 1H NMR (200 MHz, CDCl3): l 1.01
(d, J=6.8 Hz, 3H, CH3), 1.14 (d, J=7.4 Hz, 3H, CH3),
1.24–1.33 (m, 1H, CH2), 1.64–1.73 (m, 6H, CH2), 1.77 (s,
3H, CH3), 1.96–2.02 (m, 1H, CH2), 2.09–2.14 (m, 1H,
CHCH3), 2.32–2.35 (m, 1H, CH2CH(CO)CH), 2.60–2.66
References
1. Rogers, D. J.; Randolph, S. E. Science 2000, 289, 1763–
1766.
2. White, N. J.; Nosten, F.; Looareesuwan, S.; Watkins, W.
M.; Marsh, K.; Snow, R. W.; Kokwaro, G.; Ouma, J.;
Hien, T. T.; Molyneux, M. E.; Newbold, C. I.; Ruebush,
T. K.; Danis, M.; Greenwood, B. M.; Anderson, R. M.;
Olliaro, P. Lancet 1999, 353, 1965–1967.
3. Liu, J. M.; Ni, M. Y.; Fen, J. F.; Tu, Y. Y.; Wu, Z. H.;
Wu, Y. L.; Zhou, W. S. Huaxue Xuebao 1979, 37, 129–
141.
4. Klayman, D. L.; Lin, A. J.; Acton, N.; Scovill, J. P.;
Hoch, J. M.; Milhous, W. K.; Theoharides, A. D.;
Dobek, A. S. J. Nat. Prod. 1984, 47, 715–717.
5. Schimid, G.; Hofheinz, W. J. Am. Chem. Soc. 1983, 105,
624–625.
(m,
1H,
COOCHCH3),
2.75–2.84
(m,
1H,
COCH(CH2)CH), 3.27–3.36 (m, 4H), 3.67 (s, 3H,
OCH3). MS (EI): m/z 344 (M+). IR (neat): 1600, 1765
cm−1. Anal. calcd for C17H28O3S2: C, 59.27; H, 8.19,
Found: C, 59.18; H, 8.24. Optical rotation [h]D: +18.31 (c
1.0, CHCl3).
17. (a) Sreekumar, C.; Darst, K. P.; Still, W. C. J. Org.
Chem. 1980, 45, 4260–4262; (b) Cazelles, J.; Camuzat-
Dedenis, B.; Provot, O.; Robert, A.; Mayrargue, J.; Meu-
nier, B. J. Chem. Soc., Perkin Trans. 1 2000, 1265–1270.
1
18. Spectral data for 1: H NMR (500 MHz, CDCl3): l 1.00
(d, J=6.0 Hz, 3H, CH3), 1.01–1.13 (m, 2H, CH2), 1.21
(d, J=7.4 Hz, 3H, CH3), 1.34–1.43 (m, 3H, CH2, CH),
1.44 (s, 3H, CH3), 1.74–1.79 (m, 2H, CH2), 1.86–1.90 (m,
1H, CHCH3), 1.97–2.07 (m, 2H, CH2), 2.40–2.46 (qd,
J=3.8, 8.9 Hz, 1H, COCHCH3), 3.36–3.41 (qd, J=1.7,
5.3, 5.4 Hz, 1H, COCHCH3), 5.84 (s, 1H, OCHO). MS
6. Xu, X. X.; Zhu, J.; Huang, D. Z.; Zhou, W. S. Tetra-
hedron 1986, 42, 819–828.
7. (a) Avery, M. A.; Chong, W. K. M.; White, C. J. J. Am.
Chem. Soc. 1992, 114, 974–979; (b) Avery, M. A.; White,
C. J.; Chong, W. K. M. Tetrahedron Lett. 1987, 28,
4629–4632.
8. Ravindranathan, T.; Kumar, M. A.; Menon, R. B.; Hire-
math, S. V. Tetrahedron Lett. 1990, 31, 755–758.
(FAB): m/z 283 (M+1). IR (KBr): 1740 (d-lactone) cm−1
.
[h]D: +87.9 (c 0.1, dioxane); lit.5 [h]D: +89 (c 0.1, diox-
ane).