Running title
Chin. J. Chem.
Min, G. K.; Hernandez, D.; Skrydstrup, T., Efficient routes to
of geminal dibromides: ionic-to-radical switch in the reaction
mechanism. Org. Lett. 2018, 20, 5367-5369.
carbon-silicon bond formation for the synthesis of silicon-containing
peptides and azasilaheterocycles. Acc. Chem. Res. 2013, 46, 457-470.
[5] Driess, M.; Oestreich, M., New frontiers and challenges in silicon
chemistry: ISOS XVII in Berlin. Chem.-Eur. J. 2014, 20, 9144-9145.
[6] For selected review, see: (a) Gao, L.; Zhang, Y. B.; Song, Z. L.,
Exploration of versatile geminal vis(silane) chemistry. Synlett 2013,
24, 139-144; Selected examples for unique and useful characteristics
of gem- (bis)silanes, see: (b) Liu, Z. J.; Lin, X. L.; Yang, N.; Su, Z. S.; Hu,
C. W.; Xiao, P. H.; He, Y. Y.; Song, Z. L., Unique steric effect of geminal
bis(silane) To control the high exo-selectivity in intermolecular
Diels-Alder reaction. J. Am. Chem. Soc. 2016, 138, 1877-1883; (c)
Groll, K.; Manolikakes, S. M.; du Jourdin, X. M.; Jaric, M.; Bredihhin,
A.; Karaghiosoff, K.; Carell, T.; Knochel, P., Regioselective Metalations
of Pyrimidines and Pyrazines by Using Frustrated Lewis Pairs of
[11] For selected reviews, see: (a) Cheng, C.; Hartwig, J. F., Catalytic
silylation of unactivated C-H bonds. Chem. Rev. 2015, 115,
8946-8975; (b) Lipke, M. C.; Liberman-Martin, A. L.; Tilley, T. D.,
Electrophilic activation of silicon-hydrogen bonds in catalytic
hydrosilations. Angew. Chem. Int. Ed. 2017, 56, 2260-2294; For
selected examples, see: (c) Cheng, B.; Lu, P.; Zhang, H. Y.; Cheng, X. P.;
Lu, Z., Highly Enantioselective Cobalt-Catalyzed Hydrosilylation of
Alkenes. J. Am. Chem. Soc. 2017, 139, 9439-9442; (d) Guo, J.; Shen, X.
Z.; Lu, Z., Regio- and Enantioselective Cobalt-Catalyzed Sequential
Hydrosilylation/ Hydrogenation of Terminal Alkynes. Angew. Chem.
Int. Ed. 2017, 56, 615-618; (e) Toutov, A. A.; Liu, W. B.; Betz, K. N.;
Fedorov, A.; Stoltz, B. M.; Grubbs, R. H., Silylation of C-H bonds in
aromatic heterocycles by an Earth-abundant metal catalyst. Nature
2015, 518, 80-84.
.
BF3 OEt2 and Hindered Magnesium- and Zinc-Amide Bases. Angew.
Chem. Int. Ed. 2013, 52, 6776-6780; (d) Wu, Y.; Li, L. J.; Li, H. Z.; Gao,
L.; Xie, H. M.; Zhang, Z. G.; Su, Z. S.; Hu, C. W.; Song, Z. L.,
Regioselective nucleophilic addition of organometallic reagents to
3-geminal bis(silyl) N-acyl pyridinium. Org. Lett. 2014, 16, 1880-1883.
(e) Gao, L.; Lu, J.; Song, Z. L.; Lin, X. L.; Xu, Y. J.; Yin, Z. P., [1,5]-Brook
rearrangement: an overlooked but valuable silyl migration to
synthesize configurationally defined vinylsilane. The unique steric
and electronic effects of geminal bis(silane). Chem. Commun. 2013,
49, 8961-8963; (f) Zhang, Y. B.; Guo, Q. Y.; Sun, X. W.; Lu, J.; Cao, Y. J.;
Pu, Q.; Chu, Z. W.; Gao, L.; Song, Z. L., Total synthesis of bryostatin 8
using an organosilane-based strategy. Angew. Chem. Int. Ed. 2018,
57, 942-946; (g) Li, L. J.; Ye, X. C.; Wu, Y.; Gao, L.; Song, Z. L.; Yin, Z. P.;
Xu, Y. J., Sakurai reaction of 3,3-bis(silyl) silyl enol ethers with acetals
involving selective desilylation of the geminal bis(silane). Concise
synthesis of nematocidal oxylipid. Org. Lett. 2013, 15, 1068-1071; (h)
Li, L. J.; Chu, Y.; Gao, L.; Song, Z. L., Geminal bis(silane)-controlled
regio- and stereoselective oxidative Heck reaction of enol ethers
with terminal alkenes to give push-pull 1,3-dienes. Chem. Commun.
2015, 51, 15546-15549; (i) Fleming, I.; Lawrence, A. J.; Richardson, R.
D.; Surry, D. S.; West, M. C., 1,1-Disilyl alcohols as d1 synthons:
Harnessing the 1,2-Brook rearrangement. Helv. Chim. Acta. 2002, 85,
3349-3365; (j) Bai, X. F.; Deng, W. H.; Xu, Z.; Li, F. W.; Deng, Y.; Xia, C.
G.; Xu, L. W., Silicon-based bulky group-induced remote control and
conformational preference in the synthesis and application of
isolable atropisomeric amides with secondary alcohol or amine
moieties. Chem.-Asian J. 2014, 9, 1108-1115.
[12] For selected examples. Sequential hydrosilylation/hydroboration of
terminal alkynes, see: (a) Guo, J.; Lu, Z., Highly chemo-, regio-, and
stereoselective cobalt-catalyzed Markovnikov hydrosilylation of
alkynes. Angew. Chem. Int. Ed. 2016, 55, 10835-10838; (b) Zuo, Z. Q.;
Yang, J.; Huang, Z., Cobalt-catalyzed alkyne hydrosilylation and
aequential vinylsilane hydroboration with Markovnikov selectivity.
Angew. Chem. Int. Ed. 2016, 55, 10839-10843; Sequential
1,1-dihydroboration of terminal alkynes, see: (c) Zuo, Z. Q.; Huang, Z.,
Synthesis of 1,1-diboronate esters by cobalt-catalyzed sequential
hydroboration of terminal alkynes. Org. Chem. Front. 2016, 3,
434-438; One example for sequential double hydrosilylation of
alkynes, 1,2- dihydrosilylation enabled by Pt and Pd catalysis, see: (d)
Shimada, T.; Mukaide, K.; Shinohara, A.; Han, J. W.; Hayashi, T.,
Asymmetric synthesis of 1-Aryl-1,2-ethanediols from arylacetylenes
by palladium-catalyzed asymmetric hydrosilylation as a key step. J.
Am. Chem. Soc. 2002, 124, 1584-1585.
[13] For selected reviews, see: (a) Sun, J.; Deng, L., Cobalt
complex-catalyzed hydrosilylation of alkenes and alkynes. ACS Catal.
2016, 6, 290-300; (b) Greenhalgh, M. D.; Jones, A. S.; Thomas, S. P.,
Iron-catalysed hydrofunctionalisation of alkenes and alkynes.
Chemcatchem 2015, 7, 190-222; (c) Lim, D. S. W.; Anderson, E. A.,
Synthesis of vinylsilanes. Synlett 2012, 44, 983-1010; For selected
examples, see: (d) Molander, G. A.; Retsch, W. H., Selective
Hydrosilylation of alkynes catalyzed by an organoyttrium complex.
Organometallics 1995, 14, 4570-4575; (e) Trost, B. M.; Ball, Z. T.,
Alkyne hydrosilylation catalyzed by a cationic ruthenium complex:
Efficient and general trans addition. J. Am. Chem. Soc. 2005, 127,
17644-17655; (f) Wang, P.; Yeo, X. L.; Loh, T. P., Copper-catalyzed
highly regioselective silylcupration of terminal alkynes to form
α-vinylsilanes. J. Am. Chem. Soc. 2011, 133, 1254-1256; (g) Mo, Z. B.;
Mao, J.; Gao, Y. F.; Deng, L., Regio- and Stereoselective
hydrosilylation of alkynes catalyzed by three-coordinate cobalt(I)
alkyl and silyl complexes. J. Am. Chem. Soc. 2014, 136, 17414-17417;
(h) Rivera-Hernandez, A.; Fallon, B. J.; Ventre, S.; Simon, C.; Tremblay,
M. H.; Gontard, G.; Derat, E.; Amatore, M.; Aubert, C.; Petit, M.,
Regio- and stereoselective hydrosilylation of unsymmetrical alkynes
catalyzed by a well-defined, low-valent cobalt catalyst. Org. Lett.
2016, 18, 4242-4245; (i) Yang, X. X.; Wang, C. Y., Dichotomy of
manganese catalysis via organometallic or radical mechanism:
stereodivergent hydrosilylation of alkynes. Angew. Chem. Int. Ed.
[7] Calas, R.; Dunogues, J.; Biran, C.; Duffaut, N.; Pisciott.F; Lapouyad.P,
New methods of producing silicon-carbon bonds from chlorosilanes
II formation of gem-disily derivatives from a carbonyl group or an
(α-silyalkoxy)silane. J. Organomet. Chem. 1969, 20, 22-24.
[8] (a) Mitchell, T. N.; Schutze, M., 1,4-silyl migration from oxygen to
carbon in silyl allyl ethers: Kinetic and thermodynamic factors.
Tetrahedron 1999, 55, 1285-1294; (b) Song, Z. L.; Lei, Z.; Gao, L.; Wu,
X.; Li, L. J., Efficient approach to 3,3-bissilyl carbonyl and enol
derivatives via retro-[1,4] Brook rearrangement of 3-silyl
allyloxysilanes. Org. Lett. 2010, 12, 5298-5301.
[9] Liu, Z. X.; Tan, H. C.; Fu, T. R.; Xia, Y.; Qiu, D.; Zhang, Y.; Wang, J. B.,
Pd(0)-catalyzed carbene insertion into Si-Si and Sn-Sn bonds. J. Am.
Chem. Soc. 2015, 137, 12800-12803.
[10] Hazrati, H.; Oestreich, M., Copper-catalyzed double C(sp3)-Si coupling
Chin. J. Chem. 2019, 37, XXX-XXX
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
This article is protected by copyright. All rights reserved.