Page 5 of 6
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
ARTICLE
O
O
SO2Br
O
O
8914.
DOI: 10.1039/C8OB03162B
H2O-THF
40 o
1 hour
S
N
KO
N
+
2. a) C. Zhang, C. Tang and N. Jiao, Chem. Soc. Rev., 2012, 41,
3464; b) R. Samanta, K. Matcha and A. P. Antonchick, Eur. J.
Org. Chem., 2013, 2013, 5769; c) I. B. Krylov, V. A. Vil and A. O.
Terent'ev, Beilstein J. Org. Chem., 2015, 11, 92.
C
O
O
A
O
C'
3aa, 68%
3. a) T. Mallat and A. Baiker, Chem. Rev., 2004, 104, 3037; b) M.
Uyanik and K. Ishihara, Chem. Commun., 2009, 0, 2086; c) H.
Ishitani and M. Iwamoto, Comprehensive Chirality, 2012, 5, 198.
4. a) J. Gao, X. Pan, J. Liu, J. Lai, L. Chang and G. Yuan, RSC Adv.,
2015, 5, 27439; b) A. Lei, A. Singh, H. Yi, G. Zhang, C. Bian and P.
Pei, Synlett, 2017, 28, 1558.
5. a) R. Francke and R. D. Little, Chem. Soc. Rev., 2014, 43, 2492; b)
M. Yan, Y. Kawamata and P. S. Baran, Chem. Rev., 2017, 117,
13230; c) Y. Jiang, K. Xu and C. Zeng, Chem. Rev., 2018, 118,
4485; d) S. Mohle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe
and S. R. Waldvogel, Angew. Chem. Int. Ed., 2018, 57, 6018; e)
M. D. Karkas, Chem. Soc. Rev., 2018, 47, 5786; f) K. Liu, C. Song
and A. Lei, Org. Biomol. Chem., 2018, 16, 2375; g) N.
Sauermann, T. H. Meyer, Y. Qiu and Lutz Ackermann, ACS Catal.,
2018, 8, 7086.
6. a) K. S. Du and J. M. Huang, Org. Lett., 2018, 20, 2911; b) J. J.
Wang, H. S. Lin, C. Niu and G. W. Wang, Org. Biomol. Chem.,
2017, 15, 3248; c) Z. J. Wu, S. R. Li, H. Long and H. C. Xu, Chem.
Commun., 2018, 54, 4601; d) P. Huang, P. Wang, S. Wang, S.
Tang and A. Lei, Green Chem., 2018, 20, 4870; e) Y. Yu, P. Zheng,
Y. Wu and X. Ye, Org. Biomol. Chem., 2018, 16, 8917.
7. a) J. Li, W. Huang, J. Chen, L. He, X. Cheng and G. Li, Angew.
Chem. Int. Ed., 2018, 57, 5695; b) Z. Ye, M. Ding, Y. Wu, Y. Li, W.
Hua and F. Zhang, Green Chem., 2018, 20, 1732; c) H. Long, J.
Song and H.-C. Xu, Org. Chem. Front., 2018, 5, 3129; d) N. Yang
and G. Yuan, J. Org. Chem., 2018, 83, 11963.
8. a) X. Z. Tao, J. J. Dai, J. Zhou, J. Xu and H. J. Xu, Chem. Eur. J.,
2018, 24, 6932; b) H. Wang, J. Zhang, J. Tan, L. Xin, Y. Li, S.
Zhang and K. Xu, Org. Lett., 2018, 20, 2505; c) L. Zhang, Z.
Zhang, J. Zhang, K. Li and F. Mo, Green Chem., 2018, 20, 3916;
d) L. Li, M. Xue, X. Yan, W. Liu, K. Xu and S. Zhang, Org. Biomol.
Chem., 2018, 16, 4615; e) A. Shrestha, M. Lee, A. L. Dunn and M.
S. Sanford, Org. Lett., 2018, 20, 204; f) N. Sauermann, T. H.
Meyer, C. Tian and Lutz Ackermann, J. Am. Chem. Soc., 2017,
139, 18452.
9. a) A. O. Terent'ev, O. M. Mulina, D. A. Pirgach, A. I. Ilovaisky, M.
A. Syroeshkin, N. I. Kapustina and G. I. Nikishin, Tetrahedron,
2017, 73, 6871; b) S. Liang, C.-C. Zeng, H.-Y. Tian, B.-G. Sun, X.-
G. Luo and F.-z. Ren, Adv. Synth. Catal., 2018, 360, 1444.
10. a) S. O. Strekalova, M. N. Khrizanforov, T. V. Gryaznova, V. V.
Khrizanforova and Y. H. Budnikova, Russ. Chem. Bull., 2017, 65,
1295; b) V. V. Khrizanforova, K. V. Kholin, M. N. Khrizanforov, M.
K. Kadirov and Y. H. Budnikova, New J. Chem., 2018, 42, 930; c)
Y. H. Budnikova and Y. B. Dudkina, Phosphorus, Sulfur Silicon
Relat. Elem., 2018, DOI: 10.1080/10426507.2018.1540480.
11. M. Rafiee, F. Wang, D. P. Hruszkewycz and S. S. Stahl, J. Am.
Chem. Soc., 2018, 140, 22.
12. a) A. O. Terent’ev, O. M. Mulina, D. A. Pirgach, M. A. Syroeshkin,
A. P. Glinushkin and G. I. Nikishin, Mendeleev Commun., 2016,
26, 538; b) Y. Y. Jiang, Q. Q. Wang, S. Liang, L. M. Hu, R. D. Little
and C. C. Zeng, J. Org. Chem., 2016, 81, 4713; c) M. Sheykhan, S.
Khani, M. Abbasnia, S. Shaabanzadeh and M. Joafshan, Green
Chem., 2017, 19, 5940.
13. a) J. C. Siu, G. S. Sauer, A. Saha, R. L. Macey, N. Fu, T. Chauvire,
K. M. Lancaster and S. Lin, J. Am. Chem. Soc., 2018, 140, 12511;
b) X. Luo, X. Ma, F. Lebreux, I. E. Marko and K. Lam, Chem.
Scheme 4. Synthesis of sulfonate 3aa from individually prepared p-
toluenesulfonyl bromide and potassium salt of N-hydroxy
succinimide C’ (control experiment).
A
Turning back to possible radical pathway, p-toluenesulfonyl
bromide A can decompose with the formation of p-toluenesulfonyl
radical B and bromo radical.28 Radical B can be also formed through
the direct anodic oxidation of sulfonyl hydrazide 1a.29 N-oxyimide
radical D can be formed through different pathways. The first one is
a direct anodic oxidation of N-hydroxysuccinimide 2a (Figure 1,
+1.67 V)30 or N-oxysuccinimide anion C. The second one is the
reaction between 2a and bromo radical or hypobromites, bromates
or perbromates. Recombination of p-toluenesulfonyl radical B and
N-oxyimide radical D provides target product 3aa.
Conclusions
In summary, we have demonstrated atom-efficient
electrochemically induced oxidative S-O coupling, which
permits to avoid usage of stoichiometric amounts of chemical
oxidants. Sulfonyl hydrazides and N-hydroxy compounds were
applied as starting materials. The process is carried out under
constant current conditions in an experimentally convenient
undivided electrochemical cell equipped with graphite anode
and stainless steel cathode. Application of NH4Br as a
supporting electrolyte and a redox catalyst allows oxidizing
starting sulfonyl hydrazides and N-hydroxy compounds
selectively resulting in coupling products in yields from
moderate to high. On the basis of reported literature, cyclic
voltammetry data and control experiment possible reaction
pathways were proposed: molecular bromine, which is
generated through anodic oxidation of NH4Br, or hypobromite,
bromate, perbromate, tribromide anions oxidize starting
compounds to form reactive intermediates, which couple to
form S-O bond.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was supported by the Russian Science Foundation (Grant
№ 18-13-00027).
References
1. a) I. P. Beletskaya and V. P. Ananikov, Chem. Rev., 2011, 111,
1596; b) A. K. Leone, E. A. Mueller and A. J. McNeil, J. Am.
Chem. Soc., 2018, 140, 15126; c) Z. Feng, Y. L. Xiao and X. Zhang,
Acc. Chem. Res., 2018, 51, 2264; d) P. Devendar, R. Y. Qu, W. M.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins