C O M M U N I C A T I O N S
Table 1. Structural Data for Ta(iPr2-dad)3 and [Ta(iPr2-dad)3]+ as
Determined by X-ray Diffraction (average) and by DFT
Calculations (Bond Lengths in Å, Energies in eV)
method
state
Ta−N
C−N
E
rel
2a
1a
X-ray
DFT
X-ray
DFT
DFT
-
2.107(2)
2.159
2.095(6)
2.156
1.347(4)
1.352
1.377(9)
1.371
-
-
-
1A1
-
2A2
2A1
0.0
2.182
1.351
+0.64
2A2 counterpart, indicating a clear thermodynamic preference for
a ligand-based redox process. This conclusion is reinforced by the
optimized structural parameters (Table 1), where the redox-induced
2
changes in bond length in the A2 state are far more consistent
2
with experiment than those in A1.
Acknowledgment. We thank the CNRS and the LCC (P.J.D.,
M.E.), the EPSRC (J.E.M.), and the ORS Award Scheme (S.Z.K.).
Supporting Information Available: Details of the synthesis and
characterization of 1a,b and 2a,b; X-ray diffraction data for 1a and
2a; computational details (PDF). This material is available free of charge
Figure 2. Molecular structure of the cation [Ta(iPr2-dad)3]+ (2a).
References
(1) Ercoli, R.; Calderazzo, F.; Alberola, A. J. Am. Chem. Soc. 1960, 82, 2966-
2967.
(2) (a) Calderazzo, F.; Englert, U.; Pampaloni, G.; Pelizzi, G.; Zamboni, R.
Inorg. Chem. 1983, 22, 1865-1870. (b) Ellis, J. E.; Warnock, G. F.;
Barybin, M. V.; Pomije, M. K. Chem. Eur. J. 1995, 1, 521-527. (c)
Barybin, M. V.; Ellis, J. E.; Pomije, M. K.; Tinkham, M. L.; Warnock,
G. F. Inorg. Chem. 1998, 37, 6518-6527. (d) Barybin, M. V.; Young, V.
G., Jr.; Ellis, J. E. J. Am. Chem. Soc. 1999, 121, 9237-9238.
(3) Koeslag, M. A.; Baird, M. C.; Lovelace, S.; Geiger, W. E. Organometallics
1996, 15, 3289-3302.
(4) (a) Cloke, F. G. N.; Green, M. L. H. J. Chem. Soc., Dalton Trans. 1981,
1938-1943 (b) Calderazzo, F.; Pampaloni, G.; Rocchi, L.; Strahle, J.;
Wurst, K. J. Organomet. Chem. 1991, 413, 91-109.
(5) Cloke, F. G. N.; Fyne, P. J.; Gibson, V. C.; Green, M. L. H.; Ledoux, M.
J.; Perutz, R. N.; Dix, A.; Gourdon, A.; Prout, K. J. Organomet. Chem.
1984, 277, 61-73.
(6) Quirk, J.; Wilkinson, G. Polyhedron 1982, 1, 209-211
(7) (a) Van Koten, G.; Vrieze, K. AdV. Organomet. Chem. 1982, 21, 151-
239. (b) Cloke, F. G. N.; Delemos, H. C.; Sameh, A. A. J. Chem. Soc.,
Chem. Commun. 1986, 1344-1345.
(8) (a) Nakamura, A.; Mashima, K. J. Organomet. Chem. 2001, 621, 224-
230 (b) Matsuo, Y.; Mashima, K.; Tani, K. Angew. Chem., Int. Ed. 2001,
40, 960-962 (c) Mashima, K.; Matsuo, Y.; Tani, K. Organometallics
1999, 18, 1471-1481 (d) Spaniel, T.; Go¨rls, H.; Scholz, J. Angew. Chem.,
Int. Ed. 1998, 37, 1862-1865 (e) Richter, B.; Scholz, J.; Sieler, J.; Thiele,
K.-H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2649-2651.
(9) For 1a. Anal. Calcd for C24H48N6Ta: C, 47.91; H, 8.04; N, 13.97.
Found: C, 47.40; H, 8.03; N, 13.46. MS-CI (NH3): m/e 602 (M + H)+.
CV (Bu4NBF4, THF, 100 mV‚s-1): E1/2 -1.93 [1a/1a-1], -1.03 [1a+/
1a], Ep -0.12 V vs ferrocenium/ferrocene. 1H NMR (dichloromethane-
d2, 300 MHz, 300 K): δ 0.29 (s, 3 H, w1/2 155 Hz, CH3), -2.34 (s, 3 H,
w1/2 90 Hz, CH3), other signals unobserved.
(10) Crystal data for 1a: C24H48N6Ta, monoclinic, P2/c, T ) 180(2) K, a )
9.955(2) Å, b ) 15.939(3) Å, c ) 9.385(2) Å, â ) 110.73(3)°, V )
1392.7(5) Å3, Z ) 2, R1 ) 0.0227, wR2 ) 0.0477 (2275 reflections, 147
parameters), GOF ) 1.011.
(11) For 2a: Anal. Calcd for C48H68BN6Ta: C, 62.60; H, 7.44; N, 9.13.
Found: C, 62.45; H, 7.42; N, 9.08. MS-CI (NH3): m/e 601 ([Ta(iPr2-
dad)3]+), MS-ES: m/e 319 (BPh4-). 1H NMR (dichloromethane-d2, 300
MHz, 300 K): δ 7.37 (br, 8 H, o-C6H5), 7.07 (t, 8 H, m-C6H5), 6.88 (t,
4 H, p-C6H5), 6.56 (s, 6 H, CHdN), 3.54 (septet, 6 H, CH(CH3)2), 1.29
(d, 18 H, CH3), 1.14 (d, 18 H, CH3).
Figure 3. Frontier molecular orbitals for [Ta(iPr2-dad)3]+.
and exhibit temperature-independent (300-193 K) 1H NMR
spectra.11
A number of the experimental features described above are
inconsistent with a simple pseudo-octahedral ligand field model,
prompting us to examine the detailed electronic structure of these
compounds using density functional theory (DFT).13 The frontier
molecular orbitals for [Ta(dad)3]+ are shown in Figure 3. The most
striking feature of the orbital array is the strong splitting within
the t2g subset of orbitals (19e and 11a1). In D3 symmetry, the
LUMOs (i.e., π*) of the three ligands transform as a2 + e, as a
result of which, only 19e is strongly stabilized by back-bonding,
leading to the unusual diamagnetic ground state. Moreover, the
relative energies of the metal- and ligand-based orbitals are such
that the nonbonding combination of ligand LUMOs, 10a2, falls in
the gap between 19e and 11a1 and forms the LUMO of complex
(12) Crystal data for 2a: C48H68BN6Ta, monoclinic, P21/n, T ) 298(2) K, a
) 12.873(5) Å, b ) 20.883(5) Å, c ) 17.307(5) Å, â ) 99.215(5)°, V )
4593(2) Å3, Z ) 4, R1 ) 0.0209, wR2 ) 0.0495 (7040 reflections, 517
parameters), GOF ) 1.022.
(13) DFT calculations (Amsterdam Density Functional package)14 were
performed using the gradient corrections of Becke15a and Perdew (BP86)15b
Double-ú + polarization and triple-ú basis sets were used for main group
and transition metals, respectively. Relativistic effects were included using
the zeroth order relativistic approximation (ZORA). In all cases, the
terminal CH3 groups were replaced with hydrogens.
2
2a. The A2 ground state of the neutral complex, 1a, arises from
addition of a single electron to 10a2, indicating that the neutral
complex is correctly formulated as [Ta]+ [(iPr2-dad)3]- (16e + 1e),
rather than [Ta]0 [(iPr2-dad)3]0 (17e). The unpaired electron has
negligible metal character and is instead delocalized over the ligand
array, rationalizing both the esr and magnetic behavior. The
alternative formulation, where the Ta center is zerovalent, is realized
in the 2A1 state, resulting from promotion of the unpaired electron
into the 11a1 orbital. This state is located some 0.64 eV above its
(14) (a) ADF 2000.02, Theoretical Chemistry; Vrije Universiteit: Amsterdam,
2000. (b) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 42-
51. (c) te Velde, G.; Baerends, E. J. J. Comput. Phys. 1992, 99, 84-98.
(d) Versluis, L.; Ziegler, T. J. Chem. Phys. 1988, 88, 322-328.
(15) (a) Becke, A. D. Phys. ReV. A 1988, 38, 3098-3100. (b) Perdew, J. P.
Phys. ReV. B 1986, 33, 8822-8824.
JA017303T
9
J. AM. CHEM. SOC. VOL. 124, NO. 15, 2002 3819