6964
S. Sunitha et al. / Tetrahedron Letters 48 (2007) 6962–6965
Table 4. Recycling of choline chlorideÆ2ZnCl2 in the synthesis of cetyl
29.16, 29.19, 29.27, 29.44, 29.48, 29.55, 29.58, 31.82,
33.68, 34.31, 64.31, 76.59, 76.90, 77.22, 114.03; IR
(Film): m 1739, 1642, 1172, 1029 cmÀ1. Anal. Calcd for
C27H52O2: C, 79.35; H, 12.82. Found: C, 78.89; H,
12.73. EI-MS: m/z 408 [M]+, 269 [MÀ139]+, 166
[MÀ241]+.
octanoatea
Cycle
Conversionb (%)
Time (h)
1
2
3
4
5
6
99
99
98
98
96
95
5
5
5
5
5
5
2.4. Erucyl erucate (Table 2, entry 18)
a Reaction conditions: octanoic acid (2.4 mmol), cetyl alcohol
(2.4 mmol), choline chlorideÆ2ZnCl2 (1.2 mmol), reaction tempera-
1H NMR (200 MHz, CDCl3): d 0.88–0.90 (6H, br t),
1.22–1.39 (56H, br s), 1.55–1.68 (4H, br m), 1.92–2.08
(10H, br m), 2.26 (2H, t, J = 7.8 Hz), 4.03 (2H, t,
J = 6.1 Hz), 5.28–5.35 (4H, br m); 13C NMR
(75 MHz, CDCl3): d 14.33, 22.91, 25.26, 26.17, 27.44,
28.89, 29.40, 29.50, 29.55, 29.71, 29.75, 29.79, 29.87,
30.00, 32.13, 34.65, 64.63, 130.11, 130.13, 174.25; IR
(KBr): m 1739, 1654, 1240, 1173 cmÀ1. Anal. Calcd for
C44H84O2: C, 81.92; H, 13.12. Found: C, 79.33; H,
11.99. EI-MS: m/z 645 [M+1]+, 321 [MÀ324]+, 306
[MÀ338]+.
ture 110 °C.
b Based on GC.
and diesters using the Lewis acidic IL, choline chlo-
rideÆ2ZnCl2 as solvent/catalyst is reported. The present
‘liquid–liquid biphasic’ method has the following advan-
tages over existing methods for wax ester synthesis: (a)
choline chlorideÆ2ZnCl2 shows superior catalytic activity
than reported systems; (b) this IL is cheap and easy to
prepare compared to imidazolium based ILs; (c) as the
IL is moisture insensitive, there is no need to remove
water produced during the reactions and the IL can be
reused for at least six cycles without any pre-treatment
or significant loss of activity, and (d) liquid esters (as a
separate phase) can be conveniently decanted above
their melting point avoiding the use of volatile organic
solvents.
2.5. Di-2-ethylhexyl sebacate (Table 3, entry 1)
1H NMR (200 MHz, CDCl3): d 0.88–0.90 (12H, br t),
1.21–1.39 (24H, br s), 1.51–1.67 (6H, br m), 2.27 (4H,
t, J = 7.5 Hz), 3.95 (4H, d, J = 7.5 Hz); 13C NMR
(75 MHz, CDCl3): d 10.89, 13.94, 22.87, 23.69, 24.9,
28.82, 29.0, 30.32, 34.31, 38.63, 66.53, 76.61, 76.93,
77.24, 173.86; IR (Film): m 1738, 1172, 1039 cmÀ1. Anal.
Calcd for C26H50O4: C, 73.19; H, 11.81. Found: C,
73.05; H, 11.38. EI-MS: m/z 427 [M+1]+, 315
[MÀ111]+, 297 [MÀ129]+, 185 [MÀ241]+.
2. Experimental
2.1. Preparation of choline chlorideÆ2ZnCl2
Choline chloride (20 mmol) was mixed with zinc chlo-
ride (40 mmol) and heated to 150 °C with stirring until
a clear colourless liquid was obtained.25
References and notes
1. Doncescu, N. G.; Legoy, M. D. J. Am. Oil Chem. Soc.
1997, 74, 1137.
2. Mukerjee, K. D.; Kiewitt, I. J. Agric. Food Chem. 1988,
36, 1333.
2.2. General procedure for esterification
Equimolar amounts (2.4 mmol) of long chain acid and
alcohol were taken in choline chlorideÆ2ZnCl2 (1.0 g;
2.4 mmol) and the resultant reaction mixture was heated
to 110 °C, and stirred for the specified amount of time.
The top layer containing the reactants and the product
was decanted whilst hot and purified by column chro-
matography using silica gel (60–120 mesh) eluting with
10% EtOAc in hexane.
3. De, B. K.; Bhattacharya, D. K.; Bandhu J. Am. Oil Chem.
Soc. 1999, 76, 451.
4. Mantri, K.; Komura, K.; Sugi, Y. Synthesis 2005, 12,
1939.
5. Arfela, M. M.; Salmi, T.; Sundel, M.; Ekman, K.;
Peltonen, R.; Lehtonen, J. J. Appl. Catal. A: Gen. 1999,
184, 25.
6. Hino, M.; Arata, K. Appl. Catal. 1985, 18, 401.
7. Schwegler, M. A.; van Bekkum, H. Appl. Catal. 1999, 74,
191.
8. The Chemistry of Carboxylic Acids and Esters; Patai, S.,
Ed.; Wiley: New York, 1969.
9. Rama, S.; Lingaiah, N.; Devi, B. L. A. P.; Prasad, R. B.
N.; Suryanarayana, I.; Sai Prasad, P. S. Appl. Catal. 2004,
276, 163.
The spectral (1H and 13C NMR and IR) data of most of
the esters matches with those reported in the literature.4
The spectral data of three representative uncommon
wax esters are given below.
10. Kawabata, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K.
Tetrahedron Lett. 2003, 44, 9205.
2.3. Cetyl undecenoate (Table 2, entry 11)
11. Bartoli, G.; Boeglin, J.; Bosco, M.; Locatelli, M.; Mas-
saccesi, M.; Melchiorre, P.; Sambri, L. Adv. Synth. Catal.
2005, 347, 33.
12. Ishihara, K.; Ohara, S.; Yamamoto, H. Science 2001, 290,
1140.
1H NMR (200 MHz, CDCl3): d 0.88 (3H, br t), 1.21–
1.39 (38H, br s), 1.55–1.65 (2H, br m), 1.98–2.06 (2H,
q, J = 7.2 Hz), 2.25 (2H, t, J = 7.5 Hz), 4.02 (2H, t,
J = 6.6 Hz), 4.84–5.0 (2H, dd, J = 12.2, 16.99 Hz),
5.64–5.82 (1H, br m); 13C NMR (75 MHz, CDCl3): d
22.59, 24.92, 25.84, 28.55, 28.78, 28.95, 29.02, 29.11,
13. Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S.
Tetrahedron 2005, 61, 1015.