294 Letters in Organic Chemistry, 2011, Vol. 8, No. 4
Victoria Tamara Perchyonok
based reduction with (TMS)3SiH on water. Synlett, 2005, 2854-
2856. (d) Chatgilialoglu, C; Ferreri, C.; Mulazzani, Q.C.; Ballestri,
M.; Landi, L. Cis-trans isomerization of monounsaturated fatty acid
residues in phospholipids by thiyl radicals. J.Am.Chem.Soc., 2000,
122, 4593-4601 (e) Yorimitsu, T.; Nakamura, H.; Shinokubo, K.;
Oshima, K.; Fujimoto, H. Powerful solvent effect of water in
radical reaction: triethylborane-induced atom-transfer radical
cyclization in water. J.Am.Chem.Soc., 2000, 122, 11041-11047.
catalysis, Applied Catalysis. 2000, 18, 127-132. (b) Pitchumani,
K.; Corbin, D. R., Ramamurthy, V., Electron Transfer Reactions
with Zeolites: Radical Cations from Benzonorbornadienes. J. Am.
Chem. Soc., 1996, 118(34), 8152-8153 . (c) Turro, N., From
Boiling Stones to Smart Crystals: Supramolecular and Magnetic
Isotope Control of Radical-Radical Reactions in Zeolites, Acc.
Chem. Res., 2000, 33, 637-646 and references sited therein.
a. Perchyonok, V. T. Radical Reactions in Aqueous Media, RSC,
Johnson, A. E., Zhang, S., Chen, J. and Perchyonok, V. T, On the
[8]
[9]
[5]
a) Perchyonok, V. T.; Lykakis, I. N. Radical reactions in aqueous
media: origins, reason and applications. Curr. Org. Chem., 2009,
13, 573; b) Perchyonok, V. T.; Lykakis, I. N.; Tuck, K. L. Recent
use of ꢁ-cyclodextrins as molecular reactors for the radical
cyclizations under tin free conditions, Current Organic Chemistry,
advances in CꢀH bond formation in aqueous media: a mechanistic
perspective Green Chem., 2008, 10, 153; c) Perchyonok, V. T.;
Tuck, K. L.; Langford, S. J.; Hearn, M. W. On the scope of radical
reactions in aqueous media utilizing quaternary ammonium salts of
phosphinic acids as chiral and achiral hydrogen donors
Tetrahedron Lett., 2008, 49, 4777; d) Li, C.-J.; Chen, L. Organic
chemistry in water Chem. Soc. Rev., 2006, 35, 68 and references
therein; e) Yorimitsu, H.; Nakamura, T.; Shinokubo, H.; Oshima,
K., Omoto, K.; Fujimoto, H. Powerful solvent effect of water in
radical reaction: triethylborane-induced atom-transfer radical
cyclization in water J. Am. Chem. Soc., 2000, 122, 11041. For an
interesting example of use of supercritical CO2, see: f) Hadida, S.;
Super, M. S.; Beckman, E. J.; Curran, D. P. Radical reactions with
alkyl and fluoroalkyl (fluorous) tin hydride reagents in supercritical
CO2 J. Am. Chem. Soc., 1997, 119, 7406; see also: g) Tanko, J. M.,
"Free-Radical Chemistry in Supercritical Carbon Dioxide", in
Green Chemistry using Liquid and Supercritical Carbon Dioxide,
Joseph M. DeSimone and William Tumas, Ed.s; Oxford University
Press: New York, 2003; chp. 4, p. 64. (h) Lykakis, I. N.,
Perchyonok, V. T., Thiols as an efficient hydrogen atom donor in
free radical transformations in aqueous media, Current Organic
Chemistry, 2010, in print. k). Johnson, A. E., Perchyonok, V. T.
Recent Advances in Free Radical Chemistry in unconventional
medium: ionic liquids, microwaves and solid state to the rescue,
review article, Current Organic Chemistry, 2009, 13(17), in print,
l). Postigo, A.; Kopsov, S.; Zlotsky, S.S.; Ferreri, C.;
Chatgilialoglu, C. Hydrosilylation of C-C multiple bonds using
(Me3Si)3SiH in water. Comparative study of the radical initiation
step. Organometallics, 2009, doi: 10.1021/om900086m.
2010, in print. c). Johnson, A. E. Perchyonok, V. T., ꢁ -
cyclodextrin based molecular reactors for free radical chemistry in
aqueous media. Current Organic Chemistry, 2009, 13(9), 914-918.
For recent reviews of microreactor-based synthesis, see: (a)
Ehrfeld, W.; Hessel, V.; Lowe, H. Microreactors: New Technology
for Modern Chemistry, John Wiley & Sons Inc., Weinheim, 2000;
(b) Jahnisch, K.; Hessel, V.; Lowe, H.; Baerns, M. Chemistry in
microstructured reactors. Angew. Chem., Int. Ed., 2004, 43, 406-
446; (c) Watts, P.; Wiles, C. Recent advances in synthetic micro
reaction technology. Chem. Commun., 2007, 443-467; (d) Mason,
B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D.
T. Greener approaches to organic synthesis using microreactor
technology. Chem. Rev., 2007, 107, 2300-2318; (e) Ahmed-Omer,
B.; Brandt, J. C.; Wirth, T. Advanced organic synthesis using
microreactor technology. Org. Biomol. Chem., 2007, 5, 733-740;
(f) Geyer, K.; Codee, J. D. C.; Seeberger, P. H. Microreactors as
tools for synthetic chemists - the chemists' round-bottomed flask of
the 21st century? Chem. Eur. J., 2006, 12, 8434-8442; (g)
Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I. Adventures in
inner space: microflow systems for practical organic synthesis.
Synlett, 2008, 151, (e) Fukuyama, T.; Kobayashi, M.; Taifur
Rahman, Md.; Kamata, N.; Ruy, I. Spurring radical reactions of
organic halides with tin hydride and ttmss using microreactors.
Org. Lett., 2008, 10, 533-536. (f) Sugimoto, A.; Takagi, M.;
Sumito, Y.; Fukuyama, T.; Ryu, I. The barton reaction using a
microreactor and black light. Continuous flow synthesis of a key
steroid intermediate for an endothelin receptor antagonist.
Tetrahedron Lett., 2006, 47, 6197-6200, (j) Iwasaki, T.; Yoshida, J.
Free radical polymerization in microreactors significant
improvement in molecular weight distribution control.
Macromolecules, 2005, 38, 1159-1163.
[6]
[7]
Holderich W., Hesse M., Naumann F., Zeolites: Catalysis for
Organic Synthesis, Angew. Chem. Int. Ed. Engl., 1988, 27, 226-246
and references sited therein.
Selected references: (a) Navratilova, M.; Sporka, K.; Muller, A.,
Synthesis of adamantine on commercially available zeolitic