10.1002/asia.201801805
Chemistry - An Asian Journal
FULL PAPER
pyrimidinyl-phthalazinones activate NDH-II, which could lead to
the formation of lethal levels of ROS,21,27 some phthalazinones
may exert their anti-tubercular activity through the inhibition of
NDH-II and/or acting as an uncoupler of oxidative phosphorylation
in mycobacteria.15 On the other hand, a lack of correlation was
observed between the MIC values of alkyne bearing compounds
and their ability to affect NDH-II. For example, the rates of NADH
oxidation upon treatment with alkyne-substituted phthalazinones
24 and 29 (MIC = 12.5 µM and 6 µM, respectively) were
comparable to the basal rate of NADH oxidation, while alkynes 30
and 50, with comparatively high MIC values (50 µM for both),
increased the rate of NADH oxidation in IMVs. As alkynes can
undergo covalent interactions with non-target enzymes, it is
possible that the observed anti-tubercular activities of propargyl-
phthalazinones 24 and 29 resulted from off-target effects.
Similarly, the mode of action of the lead phthalazinones (e.g. 15
and 28) and pyrimidinyl-phthalazinones (e.g. 51) appears to be
independent of NDH-II.
Keywords: Nitrogen Heterocycles • Medicinal Chemistry •
Phthalazinones • Tuberculosis
[1]
[2]
[3]
[4]
M. I. Marzouk, S. A. Shaker, A. A. Abdel Hafiz, K. Z. El-Baghdady, Biol.
Pharm. Bull. 2016, 39, 239-251.
L. Yang, W. Wang, Q. Sun, F. Xu, Y. Niu, C. Wang, L. Liang, P. Xu,
Bioorg. Med. Chem. Lett. 2016, 26, 2801-2805.
A. D. Hameed, S. Ovais, R. Yaseen, P. Rathore, M. Samim, S. Singh, K.
Sharma, M. Akhtar, K. Javed, Arch. Pharm. 2016, 349, 150-159.
P. A. Procopiou, A. J. Ford, P. M. Gore, B. E. Looker, S. T. Hodgson, D.
S. Holmes, S. Vile, K. L. Clark, K. A. Saunders, R. J. Slack, J. E.
Rowedder, C. J. Watts, ACS Med. Chem. Lett. 2017, 8, 577-581.
P. A. Procopiou, C. Browning, P. M. Gore, S. M. Lynn, S. A. Richards, R.
J. Slack, S. L. Sollis, Bioorg. Med. Chem. 2012, 20, 6097-6108.
P. A. Procopiou, C. Browning, J. M. Buckley, K. L. Clark, L. Fechner, P.
M. Gore, A. P. Hancock, S. T. Hodgson, D. S. Holmes, M. Kranz, B. E.
Looker, K. M. L. Morriss, D. L. Parton, L. J. Russell, R. J. Slack, S. L.
Sollis, S. Vile, C. J. Watts, J. Med. Chem. 2011, 54, 2183-2195.
T. Önkol, D. S. Doğruer, L. Uzun, S. Adak, S. Özkan, M. Fethi Şahin, J.
Enzyme Inhib. Med. Chem. 2008, 23, 277-284.
[5]
[6]
[7]
[8]
[9]
N. Vila, P. Besada, D. Viña, M. Sturlese, S. Moro, C. Terán, RSC Adv.
2016, 6, 46170-46185.
C. C. Gunderson, K. N. Moore, Future Oncol. 2015, 11, 747-757.
Conclusions
[10] N. Chand, R. D. Sofia, J. Asthma 1995, 32, 227-234.
[11] T. Tomita, I. Yonekura, Y. Shirasaki, E. Hayashi, F. Numano, Jpn J.
Pharmacol. 1980, 30, 65-73.
In conclusion, we determined that phthalazinones are a promising
class of TB inhibitors. In the present study, computational
modelling using a representative phthalazinone scaffold indicated
that these derivatives could be accommodated in the putative
[12] A. Melikian, G. Schlewer, J. P. Chambon, C. G. Wermuth, J. Med. Chem.
1992, 35, 4092-4097.
[13] S. Kumar Gorla, Y. Zhang, M. M. Rabideau, A. Qin, S. Chacko, A. L.
House, C. R. Johnson, K. Mandapati, H. M. Bernstein, E. S. McKenney,
H. Boshoff, M. Zhang, I. J. Glomski, J. B. Goldberg, G. D. Cuny, B. J.
Mann, L. Hedstrom, Antimicrob. Agents Chemother. 2017, 61 (01)
e00939017
NDH-II Q-site. Accordingly,
a
library of phthalazinones
functionalised at the 2- and 7-positions were synthesised and
tested for their ability to inhibit the growth of M. tuberculosis. In
general, the presence of electron-withdrawing or lipophilic groups
on the phthalazinone or pyrimidinyl-phthalazinone scaffolds
increased the anti-tubercular activity of the compounds, with
several promising TB inhibitors, including fluorophenyl-
pyrimidinyl-heptyl-phthalazinone 51 with an MIC = 1.6 M, being
identified. The compounds were then screened for their ability to
affect NADH oxidation in IMVs, which demonstrated that certain
pyrimidinyl-phthalazinones increased the rate of NADH oxidation,
while some phthalazinones decreased the rate of NADH oxidation.
Other derivatives, such as heptyl-phthalazinone 51, did not
greatly affect NADH oxidation, thus suggesting a different mode
of action. Taken together, these studies are the first to
demonstrate the potential of phthalazinones to act as anti-
tubercular inhibitors. Further studies into optimising the anti-
tubercular activity of these compounds and to better understand
their mode of action are underway.
[14] A. M. Sridhara, K. R. V. Reddy, J. Keshavayya, P. S. K. Goud, B. C.
Somashekar, P. Bose, S. K. Peethambar, S. K. Gaddam, Eur. J. Med.
Chem. 2010, 45, 4983-4989.
[15] K. Hards, G. M. Cook, Drug Res. Updates 2018, 36, 1-12.
[16] K. Andries, P. Verhasselt, J. Guillemont, H. W. H. Göhlmann, J.-M. Neefs,
H. Winkler, J. van Gestel, P. Timmerman, M. Zhu, E. Lee, P. Williams, D.
de Chaffoy, E. Huitric, S. Hoffner, E. Cambau, C. Truffot-Pernot, N.
Lounis, V. Jarlier. Science 2005, 307, 223–227.
[17] A. H. Diacon, P.R. Donald, A. Pym, M. Grobusch, R. F. Patientia, R.
Mahanyele, N. Bantubani, R. Narasimooloo, T. De Marez, R. van
Heeswijk, N. Lounis, P. Meyvisch, K. Andries, D. F. McNeeley,
Antimicrob. Agents Chemother. 2012, 56, 3271–3276.
[18] A. H. Diacon, A. Pym, M. Grobusch, R. Patientia, R. Rustomjee, L. Page-
Shipp, C. Pistorius, R. Krause, M. Bogoshi, G. Churchyard, A. Venter, J.
Allen, J. Carlos Palomino, T. De Marez, R. P.G. van Heeswijk, N. Lounis,
P. Meyvisch, J. Verbeeck, W. Parys, K. de Beule, K. Andries, D. F. Mc
Neeley, N Engl. J. Med. 2009; 360, 2397–2405.
[19] K. Pethe, P.Bifani J. Jang, S. Kang, S. Park, S. Ahn, J, Jiricek, J. Jung,
H. K. Jeon, J. Cechetto, T. Christophe, H. Lee, M. Kempf, M. Jackson, A.
J Lenaerts, H. Pham, V. Jones, M. J. Seo, Y. M. Kim, M. Seo, J. J. Seo,
D. Park, Y. Ko, I. Choi, R. Kim, S. Y. Kim, S. Lim, S.-A. Yim, J. Nam, H.
Kang, H. Kwon, C.-T. Oh, Y. Cho, Y. Jang, J. Kim, A. Chua, B. H. Tan,
M. B Nanjundappa, S. P S Rao, W. S Barnes, R. Wintjens, J. R Walker,
S. Alonso, S. Lee, J. Kim, S. Oh, T. Oh, U. Nehrbass, S.-J. Han, Z. No,
J. Lee, P. Brodin, S.-N. Cho, K. Nam, J. Kim, Nat. Med. 2013, 19, 1157–
1160.
Acknowledgements
This work was funded by the Maurice Wilkins Centre for Molecular
Biodiscovery. KTS was supported by a Maurice Wilkins Centre
PhD Scholarship. The authors would like to thank Dr. Mathew
Anker for assistance with obtaining a crystal structure of
compound 26.
[20] K. A. Sacksteder, M. Protopopova, C.E. Barry, K. Andries, C. A. Nacy,
Future Microbiol. 2012, 7, 823–837.
[21] T. Yano, S. Kassovska-Bratinova, J. S. Teh, J. Winkler, K. Sullivan, A.
Issacs, N. M. Schechter, H. Rubin, J. Biol. Chem. 2011, 286, 10276–
10287.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.