C O M M U N I C A T I O N S
Acknowledgment. This work was supported by a Grant-in-Aid
for Scientific Research (No. 14550816) from the Ministry of
Education, Science, Sports, and Culture of Japan.
Supporting Information Available: Experimental procedures and
spectral data for all of the new compounds (PDF). This material is
References
the iridium- and rhodium-catalyzed borylation of arenes13 rather
than that of the Pd(OCOCF3)2-catalyzed trans-hydroarylation of
alkynes via electrophilic C-H activation of arenes.7 No product
was obtained using ortho-, meta-, and para-disubstituted benzenes.
Hydroarylation of 2a in an equimolar mixture of toluene and
anisole afforded 6 and 7 in nearly equal yields, 42% and 40%,
respectively. In contrast, methyl benzoate was more reactive than
toluene, yielding 8 and 6 in 64% and 28% yields, respectively,
from the hydroarylation in their mixture. In a toluene/chlorobenzene
mixture, reaction with toluene was suppressed relative to the
reaction in neat toluene, giving 6 in 14% yield, although 9 was
obtained in 32% yield, similar to that obtained in neat chloroben-
zene. The preference for electron-poor arenes as well as the
statistical product distributions is inconsistent with electrophilic
C-H activation.7 The basis of these results cannot be understood
until the mechanism for the hydroarylation is elucidated.
(1) (a) Kakiuchi, F.; Murai, S. Activation of C-H bonds: Catalytic Reactions.
In ActiVation of UnreactiVe Bonds and Organic Synthesis; Murai, S., Ed.;
Springer: Berlin, 1999; pp 47-79. (b) Dyker, G. Angew. Chem., Int. Ed.
1999, 38, 1698. (c) Guari, Y.; Sabo-Etienne, S.; Chaudret, B. Eur. J. Inorg.
Chem. 1999, 1047. (d) Crabtree, R. H. J. Chem. Soc., Dalton Trans. 2001,
2437. (e) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731.
(2) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 259.
(3) For alkenes: (a) Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108,
2728. (b) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.;
Sonoda, M.; Chatani, N. Nature 1993, 366, 529. (c) Murai, S.; Kakiuchi,
F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Pure
Appl. Chem. 1994, 66, 1527. (d) Sonoda, M.; Kakiuchi, F.; Chatani, N.;
Murai, S. J. Organomet. Chem. 1995, 504, 151. (e) Kakiuchi, F.; Sekine,
S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N.; Murai, S. Bull.
Chem. Soc. Jpn. 1995, 68, 62. (f) Sonoda, M.; Kakiuchi, F.; Kamatani,
A.; Chatani, N.; Murai, S. Chem. Lett. 1996, 109. (g) Kakiuchi, F.;
Yamauchi, M.; Chatani, N.; Murai, S. Chem. Lett. 1996, 111. (h) Murai,
S.; Chatani, N.; Kakiuchi, F. Pure Appl. Chem. 1997, 69, 589. (i) Kakiuchi,
F.; Sato, T.; Yamauchi, M.; Chatani, N.; Murai, S. Chem. Lett. 1999, 19.
(j) Kakiuchi, F.; Sonoda, M.; Tsujimoto, T.; Chatani, N.; Murai, S. Chem.
Lett. 1999, 1083. (k) Lim, Y.-G.; Kim, Y. H.; Kang, J.-B. J. Chem. Soc.,
Chem. Commun. 1994, 2267. (l) Lim, Y.-G.; Kang, J.-B.; Kim, Y. H. J.
Chem. Soc., Perkin Trans. 1 1996, 2201. (m) Lim, Y.-G.; Han, J.-S.; Yang,
S.-S.; Chun, J. H. Tetrahedron Lett. 2001, 42, 4853. (n) Jun, C.-H.; Hong,
J.-B.; Kim, Y.-H.; Chung, K.-Y. Angew. Chem., Int. Ed. 2000, 42, 4853.
(o) Guari, Y.; Sabo-Etienne, S.; Chaudret, B. J. Am. Chem. Soc. 1998,
120, 4228. (p) Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 1999,
121, 6616.
Scheme 1
(4) For alkynes: (a) Kakiuchi, F.; Yamamoto, Y.; Chatani, N.; Murai, S.
Chem. Lett. 1995, 681. (b) Kakiuchi, F.; Sato, T.; Tsujimoto, T.; Yamauchi,
M.; Chatani, N.; Murai, S. Chem. Lett. 1998, 1053. (c) Halbritter, G.;
Knoch, F.; Wolski, A.; Kisch, H. Angew. Chem., Int. Ed. Engl. 1994, 33,
1603. (d) Aulwurm, U. R.; Melchinger, J. U.; Kisch, H. Organometallics
1995, 14, 3385. (e) Durr, U.; Kisch, H. Synlett 1997, 1335. (f) Satoh, T.;
Nishiyama, Y.; Miura, M.; Nomura, M. Chem. Lett. 1999, 615. (g) Harris,
P. W. R.; Richard, C. E. F.; Woodgate, P. D. J. Organomet. Chem. 1999,
589, 168. (h) Lim, Y.-G.; Lee, K.-H.; Koo, B. T.; Kang, J.-B. Tetrahedron
Lett. 2001, 42, 7609.
To elucidate the role of boranes in the hydroarylation, complex
1a or 1b was treated with excess B(n-Bu)3 at 100 °C in benzene.
Despite the reaction of these complexes, no identifiable complex
was obtained. In contrast, treatment of the corresponding dinuclear
platinum complex 10a with B(n-Bu)3 afforded hydride-bridged
complex 11 (Scheme 1). Similar hydride-bridged palladium com-
plexes generated from 1a or 1b could not be isolated probably due
to their instability.14 Because treatment of chloride-bridged complex
10b with NaBH4 also gave 11,11 this system was applied to
palladium-catalyzed hydroarylation. Iodide-bridged complex 1c did
function as a catalyst for the hydroarylation in the presence of
NaBH4, giving 3a in 30% yield (eq 4).
(5) Sasaki, K.; Sakakura, T.; Tokunaga, Y.; Wada, K.; Tanaka, M. Chem.
Lett. 1988, 685.
(6) (a) Matsumoto, T.; Taube, D. J.; Periana, R. A.; Taube, H.; Yoshida, H.
J. Am. Chem. Soc. 2000, 122, 7414. (b) Matsumoto, T.; Yoshida, H. Chem.
Lett. 2001, 72, 107. (c) Matsumoto, T.; Periana, R. A.; Taube, D. J.;
Yoshida, H. J. Mol. Catal. A 2002, 180, 1. (d) Periana, R. A.; Liu, X. Y.;
Bhalla, G. Chem. Commun. 2002, 3000.
(7) (a) Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y.
Science 2000, 287, 1992. (b) Jia, C.; Lu, W.; Oyamada, J.; Kitamura, T.;
Matsuda, K.; Irie, M.; Fujiwara, Y. J. Am. Chem. Soc. 2000, 122, 7252.
(8) (a) Hong, P.; Cho, B.-R.; Yamazaki, H. Chem. Lett. 1979, 339. (b) Hong,
P.; Cho, B.-R.; Yamazaki, H. Chem. Lett. 1980, 507. (c) Yamazaki, H.;
Hong, P. J. Mol. Catal. 1983, 21, 133. (d) Hong, P.; Mise, T.; Yamazaki,
H. Bull. Chem. Soc. Jpn. 1990, 63, 247.
(9) Tokunaga, Y.; Sakakura, T.; Tanaka, M. J. Mol. Catal. 1989, 56, 305.
(10) Boese, W. T.; Goldman, A. S. Organometallics 1991, 10, 782.
(11) Tsukada, N.; Tamura, O.; Inoue, Y. Organometallics 2002, 21, 2521.
(12) Grushin, V. V.; Alper, H. Organometallics 1993, 12, 1890.
(13) (a) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.;
Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390. (b) Ishiyama, T.; Takagi,
J.; Hartwig, J. F.; Miyaura, N. Angew. Chem., Int. Ed. 2002, 41, 3056.
(c) Cho, J.-Y.; Iverson, C. N.; Smith, M. R., III. J. Am. Chem. Soc. 2000,
122, 12868. (d) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.;
Smith, M. R., III. Science 2002, 295, 305.
(14) Hydride- and dppm-bridged dipalladium A-frame complexes [Pd2R2(µ-
H)(µ-dppm)2]X are thermolytically inert at ambient temperature probably
due to trans arrangement for R and H. (a) Stockland, R. A., Jr.; Anderson,
G. K.; Rath, N. P. J. Am. Chem. Soc. 1999, 121, 7945. (b) Stockland, R.
A., Jr.; Anderson, G. K.; Rath, N. P. Inorg. Chim. Acta 2000, 300-302,
395.
In summary, we have found dinuclear palladium complexes 1a-c
catalyzed cis-hydroarylation of alkyne with monosubstituted arenes,
in which meta and para products were formed in statistical ratios.
Further studies of reaction mechanisms and the improvement of
catalyst activity are currently under investigation.
JA0375075
9
J. AM. CHEM. SOC. VOL. 125, NO. 40, 2003 12103