(AB system, J = 16.0 Hz, CH2, 2H), 6.73 (s, CH, 1H), ca. 6.9–7.8 (c, ArH,
25H). 31P{1H}NMR (CDCl3) d 38.0 (d, JRh–P = 152 Hz), 2143.7 (sep.
JRh–P = 710 Hz, PF). FAB MS (m/z of cation part (M)): found: 721 (M+ 2
1).
3a (reddish brown, 42.9%): IR (Nujol) 1599, 1537 (CNO and CNC), 835
cm21 (PF6). UV (CH2Cl2) lmas ≈ 298 nm. dH (CDCl3) 1.20 (d, JP–H = 2.6
Hz, Cp*, 15H), 1.57 (s, p-Me 3H), 2.34 (s, p-Me, 3H), 3.11 and 3.29 (AB
type system, J = 16.5 Hz, 2H), 6.67 (s, CH, 1H), ca. 6.9–7.8 (c, ArH, 23H).
31P{1H}NMR (CDCl3) d 38.0 (d, JRh–P = 151 Hz), 2143.7 (sep. JP–F
712 Hz, PF). FAB MS (m.z of cation part, M) found 749 (M+ 2 1).
=
4b (yellow, 61.5%): IR (Nujol) 1545 (CNO and CNC), 839 cm21 (PF6).
UV (CH2Cl2) lmax ≈ 268(sh), 400(sh) nm. dH (CDCl3) 1.25 (d, JP–H = 2.7
Hz, Cp*, 15H), 2.07 (d, JP–H = 9.2 Hz, Me 3H), 3.61 and 3.72 (AB type
system, J = 15.5 Hz, 2H), 6.65 (d, JP–H = 2.2 Hz, 1H), ca. 6.8–7.9 (c, ArH,
20H). 31P{1H}NMR (CDCl3) d 17.9 (d, JRh–P = 148 Hz), 2143.7 (sep. JP–F
=
712 Hz, PF). Anal. Found:
C 58.47, H 5.44%. Calcd. for
C39H41OF6P2Rh: C 58.22, H 5.14%.
‡ Crystal data for 3a: M = monoclinic, space group Pn (No. 7), Z = 2, a
= 11.363(8), b = 9.32(1), c = 20.289(7) Å, b = 103.06(4)°, U = 2093(2)
Å3. The structure was solved by Patterson methods and refined by full-
matrix least-squares techniques for all unique reflections (3676) to R =
0.121 and Rw = 0.180 [w = 1/s2(Fo2)] and R1 = 0.060 (for 3285
reflections (I
> 2.0s(I))), GOF = 2.34. CCDC 163783. See http://
Scheme 2 Possible pathway for the formation of alkenyl ketone complexes.
The PF6 anion was omitted for clarity.
format.
of a highly reactive vinylidene intermediate with traces of
water.5 Formation of the acyl complex of ruthenium has been
reported by Bianchini et al.6 In the iridium complex the C–C
bond cleavage from the hydroxycarbene complex occurred to
form the carbonyl complex and toluene. It was confirmed by the
following separate experiment that the oxygen atom of the
carbonyl ligand was generated from water; the reaction of
Cp*Ir(MDMPP-P,O)Cl2 with 18OH2 in the presence of KPF6
1 M. Ryang, Y. Sawa, S. N. Somasundaram, S. Murai and S. Tsutumi, J.
Organomet. Chem., 1972, 46, 375; P. Deshong, D. R. Sidler, P. J.
Rybcznski, G. A. Slough and A. L. Rheingold, J. Am. Chem. Soc., 1988,
110, 2575; A. B. Smith, P. A. Levenberg, P. J. Jerris, R. M. Scarborough,
Jr. and P. M. Wovkulich, J. Am. Chem. Soc., 1981, 103, 1501; C.
Bianchini, P. Innocenti, A. Melli and M. Sabat, Organometallics, 1986,
5, 72.
2 E. Carmona, E. G. Puebla, A. Monge, J. M. Mar´ın, M. Paneque and M.
L. Poveda, Organometallics, 1989, 8, 976.
gave [Cp*Ir(MDMPP-P,O)(C18O)](PF6) (MDMPP-P,O
=
PPh2(C6H3-2-MeO-6-O)).7 The metal-assisted cleavage of the
C–C triple bond with formation of the carbonyl complex and the
saturated hydrocarbon with one less carbon atom has been
known in ruthenium, platinum or iridium complexes.6,8
The present reactions provide a convenient one-pot synthesis
of alkenyl ketone complexes from metal halide bearing
pentamethylcyclopentadienyl group, alkynes and water. We are
currently investigating application of the reaction to the
synthesis of lactone and vinylketone using a catalytic amount of
a rhodium complex.
We thank Professor Shigetoshi Takahashi and Dr Fumie
Takei for measurements of FAB mass spectroscopy. This work
was partially supported by a Grant-in Aid for Scientific
Research from the Ministry of Education, Science, Sports, and
Culture of Japan.
3 H. G. Alt and M. E. Jansen, Angew. Chem., Int. Ed. Engl., 1982, 21, 861;
H. G. Alt and U. Thewalt, J. Organomet. Chem., 1984, 368, 235; H. G.
Alt, J. Organomet. Chem., 1985, 288, 149; H. G. Alt, H. E. Engelhardt,
U. Thewalt and J. Riede, J. Organomet. Chem., 1985, 288, 165; H. G. Alt
and H. I. Hayen, J. Organomet. Chem., 1986, 315, 337; Y. Kataoka, Y.
Iwato, A. Shibahara, T. Yamagata and K. Tani, Chem. Commun., 2000,
841.
4 D. L. Reger and D. G. Garza, Organometallics, 1993, 12, 554.
5 M. I. Bruce, Chem. Rev., 1991, 91, 197; M. I. Bruce, Chem. Rev., 1998,
98, 2797; C. Bruneau and P. H. Dixneuf, Acc. Chem. Res., 1999, 32, 311;
F. A. Hill, in Comprehensive Organometallic Chemistry II, ed. E. W.
Abel, F. G. A. Stone and G. Wilkinson, Pergamon Press, Oxford, UK,
1995, vol. 7, p. 351; C. Mene´ndez, D. Morales, J. Pe´rez, V. Fiera and D.
Miguel, Organometallics, 2001, 20, 2775.
6 C. Bianchini, J. A. Casares, M. Peruzzini, A. Romerosa and F. Zanobini,
J. Am. Chem. Soc., 1996, 118, 4585; W. Knaup and H. Werner, J.
Organomet. Chem., 1991, 411, 471.
7 K. Sugawara and Y. Yamamoto, unpublished results.
8 M. I. Bruce and A. G. Swincer, Aust. J. Chem., 1980, 33, 1471; O. M. Abu
Sala and M. I. Bruce, J. Chem. Soc., Dalton Trans., 1974, 2302; B. P.
Sullivan, R. S. Smythe, E. M. Kober and T. J. Meyer, J. Am. Chem. Soc.,
1982, 104, 4701; C. Mountassir, T. B. Hadada and H. Le Bozec, J.
Organomet. Chem., 1990, 388, C13; M. I. Bruce, Pure Appl. Chem.,
1986, 58, 553; S. Davies, J. P. McNally and A. J. Smallridge, Adv.
Organomet. Chem., 1990, 30, 30; C. Bianchini, M. A. Peruzzini, F.
Zanobini, C. E. Lopez, I. de los Rios and A. Romerosa, J. Chem. Soc.,
Chem. Commun., 1999, 443; U. Belluco, R. Bertani, F. Meneghetti, R. A.
Michelin and M. Mozzon, J. Organomet. Chem., 1999, 583, 131.
Notes and references
† Satisfactory analytical data were obtained for new complexes: Prepara-
tion of 3b: A solution of 1 (97.6 mg, 0.171 mmol), phenylacetylene (0.2 mL,
18 mmol) and H2O (1.5 mL, 83 mmol) in CH2Cl2 (10 mL) and acetone (15
mL) was stirred at rt. After 24 h, the solvent was removed, and the residue
was extracted with CH2Cl2. The CH2Cl2 was concentrated, and diethyl ether
was added to give reddish brown crystals of 3b (80.0 mg, 54.6%). IR
(Nujol): 1588, 1547 (CNO and CNC), 839 cm21 (PF6); UV (CH2Cl2): lmax
≈ 302 nm. dH (CDCl3): 1.19 (d, JPH = 2.7 Hz, Cp*, 15H), 3.16 and 3.32
CHEM. COMMUN., 2002, 128–129
129