Organic Letters
Letter
P. V. G.; Dey, S.; Allen, S. E.; Niederer, K. A.; Sung, P.; Hewitt, K.;
Torruellas,C.;Herling,M.R.;Kozlowski,M.C.Org.Lett.2017,19,5505.
(4)(a)Constantin,M.-A.;Conrad,J.;Beifuss,U.GreenChem.2012,14,
2375. (b) Morimoto, K.; Sakamoto, K.; Ohnishi, Y.; Miyamoto, T.; Ito,
M.; Dohi, T.; Kita, Y. Chem. - Eur. J. 2013, 19, 8726. (c) Kita, Y.; Dohi, T.
Chem. Rec. 2015, 15, 886. (d) Morimoto, K.; Sakamoto, K.; Ohshika, T.;
Dohi, T.; Kita, Y. Angew. Chem., Int. Ed. 2016, 55, 3652. (e) Sharma, S.;
Parumala, S. K. R.;Peddinti,R. K. J. Org.Chem. 2017, 82, 9367.(f)More,
N. Y.;Jeganmohan, M. Eur. J. Org. Chem. 2017, 2017, 4305. (g)More, N.
Y.; Jeganmohan, M. Chem. Commun. 2017, 53, 9616.
(5) (a) Kirste, A.; Hayashi, S.; Schnakenburg, G.; Malkowsky, I. M.;
Stecker, F.; Fischer, A.; Fuchigami, T.; Waldvogel, S. R. Chem. - Eur. J.
2011,17,14164.(b)Jiang,Q.;Sheng,W.;Tian,M.;Tang,J.;Guo,C.Eur.
J. Org. Chem. 2013, 2013, 1861.
(6)(a)Ito,M.;Kubo,H.;Itani,I.;Morimoto,K.;Dohi,T.;Kita,Y.J.Am.
Chem. Soc. 2013, 135, 14078. (b) Jacquemot, G.; Menard, M.-A.;
L’Homme, C.; Canesi, S. Chem. Sci. 2013, 4, 1287. (c) Fujimoto, S.;
Matsumoto, K.; Iwata, T.; Shindo, M. Tetrahedron Lett. 2017, 58, 973.
(7)(a)Matsumoto,K.;Dougomori,K.;Tachikawa,S.;Ishii,T.;Shindo,
M.Org.Lett.2014,16,4754.(b)Matsumoto,K.;Yoshida,M.;Shindo,M.
Angew. Chem., Int. Ed. 2016, 55, 5272. (c) Morimoto, K.; Koseki, D.;
Dohi, T.; Kita, Y. Synlett 2017, 28, 2941.
(8)(a)Waldvogel,S. R.PureAppl. Chem.2010,82,1055.(b)Kirste,A.;
Schnakenburg,G.;Stecker,F.;Fischer,A.;Waldvogel,S.R.Angew.Chem.,
Int. Ed. 2010, 49, 971. (c) Kirste, A.; Elsler, B.; Schnakenburg, G.;
Waldvogel, S. R. J. Am. Chem. Soc. 2012, 134, 3571. (d) Elsler, B.;
Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew.
Chem., Int. Ed. 2014, 53, 5210. (e) Schulz, L.; Enders, M.; Elsler, B.;
Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew.
Chem., Int. Ed. 2017, 56, 4877. (f) Wiebe, A.; Lips, S.; Schollmeyer, D.;
Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56, 14727.
(g) Waldvogel, S. R.; Dahms, B.; Franke, R. ChemElectroChem 2018, 5,
1249.
with NONO3 by means of disproportionation. Under acidic
conditions, a nitrosonium and a nitronium ion are released upon
protonation. Finally, the nitronium ion can oxidize nitrogen
monoxide instead of molecular oxygen, maintaining the catalytic
cycle.
Insummary,wedevelopedthecatalytic,aerobic,andmetal-free
dehydrogenative coupling of electron-rich phenols and anilides
using nitrosonium salts as the catalyst and ambient oxygen as the
sole oxidant. Phenols were efficiently homocoupled, revealing
unusual selectivity for biaryl formation. Unusual connectivity
translated into the synthesis of an unprecedented inverse
Pummerer-type ketone in good yields. Further, phenol−arene
heterocoupling was disclosed in excellent yield and selectivity.
Finally, we found evidence that phenols and anilides share a
similar pathway in oxidative coupling by synthesizing a set of
dimerized anilides and successfully performing the phenol−
anilide cross-coupling. Application of nitrosonium salts repre-
sents a sustainable and unprecedented entry into oxidative
coupling methodology. We believe that the presented method-
ology will accelerate development in the field of sustainable,
metal-free, andcatalyticdehydrogenativecouplingreactions, due
to the accessibility and low costs of nitrosonium salts and
exclusion of the requirement for any specialized equipment or
reagents.
ASSOCIATED CONTENT
* Supporting Information
■
S
TheSupportingInformationisavailablefreeofchargeontheACS
Details on the optimization, experimental procedures, and
compound characterization data (PDF)
(9) Yan, M.; Kawamata, Y.; Baran, P. S. Angew. Chem., Int. Ed. 2018, 57,
4149.
(10)Folgueiras-Amador,A. A.;Philipps,K.;Guilbaud,S.;Poelakker, J.;
Wirth, T. Angew. Chem., Int. Ed. 2017, 56, 15446.
AUTHOR INFORMATION
Corresponding Author
■
(11) (a) Lee, K. Y.; Kuchynka, D. J.; Kochi, J. K. Inorg. Chem. 1990, 29,
4196. (b) Zhai, L.; Shukla, R.; Wadumethrige, S. H.; Rathore, R. J. Org.
Chem.2010,75,4748.(c)Colomer,I.;Batchelor-McAuley,C.;Odell,B.;
Donohoe, T. J.; Compton, R. G. J. Am. Chem. Soc. 2016, 138, 8855.
(12)(a)Radner, F. J. Org. Chem. 1988, 53, 702. (b)Kim, E. K.;Kochi,J.
K.J.Org.Chem.1989,54,1692.(c)Tanaka,M.;Nakashima,H.;Fujiwara,
M.; Ando, H.; Souma, Y. J. Org. Chem. 1996, 61, 788.
ORCID
Notes
(13) (a) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41,
3381. (b)Allen, S. E.;Walvoord, R. R.;Padilla-Salinas, R.;Kozlowski, M.
C. Chem. Rev. 2013, 113, 6234.
(14) (a) Su, B.; Li, L.; Hu, Y.; Liu, Y.; Wang, Q. Adv. Synth. Catal. 2012,
354, 383. (b) Bering, L.; Paulussen, F. M.; Antonchick, A. P. Org. Lett.
2018, 20, 1978.
(15) Bandlish, B. K.; Shine, H. J. J. Org. Chem. 1977, 42, 561.
(16) (a) Bering, L.; Antonchick, A. P. Org. Lett. 2015, 17, 3134.
(b)Manna,S.;Antonchick,A.P.Chem.-Eur.J.2017,23,7825.(c)Bering,
L.; Antonchick, A. P. Chem. Sci. 2017, 8, 452.
(17) Barjau, J.; Schnakenburg, G.; Waldvogel, S. R. Angew. Chem., Int.
Ed. 2011, 50, 1415.
(18) (a) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am.
Chem. Soc. 2006, 128, 8754. (b) Stuart, D. R.; Fagnou, K. Science 2007,
316, 1172. (c)Gaster, E.;Vainer, Y.;Regev, A.;Narute, S.;Sudheendran,
K.; Werbeloff, A.; Shalit, H.; Pappo, D. Angew. Chem., Int. Ed. 2015, 54,
4198. (d) Dyadyuk, A.; Sudheendran, K.; Vainer, Y.; Vershinin, V.;
Shames, A. I.; Pappo, D. Org. Lett. 2016, 18, 4324.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
A.P.A. acknowledges the support of the DFG (Heisenberg
scholarship AN 1064/4-1) and the Boehringer Ingelheim
Foundation (Plus 3). L.B. is supported by the Verband der
Chemischen Industrie e.V.
REFERENCES
■
(1)(a)Yamaguchi,J.;Yamaguchi,A.D.;Itami,K.Angew.Chem.,Int.Ed.
2012, 51, 8960. (b)Girard,S. A.;Knauber, T.;Li, C.-J. Angew. Chem.,Int.
Ed. 2014, 53, 74. (c) Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014, 114, 9219.
(2) (a) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev.
2009,38,3193.(b)Grimsdale,A.C.;LeokChan,K.;Martin,R.E.;Jokisz,
P. G.; Holmes, A. B. Chem. Rev. 2009, 109, 897. (c) Bringmann, G.;
Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.
(3) (a) Dewar, M. J. S.; Nakaya, T. J. Am. Chem. Soc. 1968, 90, 7134.
(b) Smrcina, M.; Vyskocil, S.; Maca, B.; Polasek, M.; Claxton, T. A.;
Abbott, A. P.; Kocovsky, P. J. Org. Chem. 1994, 59, 2156. (c) Lee, Y. E.;
Cao, T.; Torruellas, C.; Kozlowski, M. C. J. Am. Chem. Soc. 2014, 136,
6782. (d) Libman, A.; Shalit, H.; Vainer, Y.; Narute, S.; Kozuch, S.;
Pappo, D. J. Am. Chem. Soc. 2015, 137, 11453. (e)Shalit, H.; Libman, A.;
Pappo,D.J.Am.Chem.Soc.2017,139,13404.(f)Vershinin,V.;Dyadyuk,
A.;Pappo,D.Tetrahedron2017,73,3660.(g)Kang,H.;Lee,Y.E.;Reddy,
(19) Blakemore, P. R.; White, J. D. Chem. Commun. 2002, 1159.
D
Org. Lett. XXXX, XXX, XXX−XXX