FULL PAPERS
Rafal Kowalczyk et al.
References
[1] P. Chauhan, S. Mahajan, D. Enders, Chem. Rev. 2014,
114, 8807–8864.
[2] a) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med.
Chem. 2014, 57, 2832–2842; b) X. Just-Baringo, F. Al-
bericio, M. lvarez, Angew. Chem. 2014, 126, 6720–
6735; Angew. Chem. Int. Ed. 2014, 53, 6602–6616.
[3] J. Zhang, W. Wang, Catal. Sci. Technol. 2012, 2, 42–53.
[4] For selected examples, see: a) Y.-R. Chen, U. Das, M.-
H. Liu, W. Lin, J. Org. Chem. 2015, 80, 1985–1992;
Scheme 3. RCM reaction of adduct 13
´
b) R. Kowalczyk, A. J. Wierzba, P. J. Boratynski, J. Ba˛-
kowicz, Tetrahedron 2014, 70, 5834–5842; c) Z. Wang,
Q. Yao, T. Kang, J. Feng, X. Liu, L. Lin, X. Feng,
Chem. Commun. 2014, 50, 4918–4920; d) M. Yoshida,
E. Masaki, H. Ikehara, S. Hara, Org. Biomol. Chem.
ing acceptors such as electron poor, conjugated dien-
ones and en-ynones. Bifunctional catalysis based on
Cinchona alkaloid squaramides facilitated the reac-
tion of dienones by hydrogen-bonding, but also assur-
ed regioselectivity in the addition to ynenones leading
exclusively to b-adducts. As little as 0.5–1 mol% of
squaramide catalysts provided very good enatioselec-
tivity at room temperature. Moreover, a single recrys-
tallization of a few solid products led to further enan-
tiomeric enrichment. Together with iron(III)-salen
complexes,[8a] squaramides C13 and C14 offer access
to all possible adducts to linear dienones in a highly
regio- and stereoselective manner. The obtained prod-
ucts, still possessing reactive unsaturated bonds, can
undergo further transformations including ring-closing
metathesis.
ˇ
2012, 10, 5289–5297; e) M. Hutka, V. Polackova, J.
Marak, D. Kaniansky, R. Sebesta, A. S. Toma, Eur. J.
Org. Chem. 2010, 6430–6435; f) H.-H. Lu, X.-F. Wang,
C.-J. Yao, J.-M. Zhang, H. Wu, W.-J. Xiao, Chem.
Commun. 2009, 28, 4251–4253; g) F. Pesciaioli, F. De
Vincentiis, P. Galzerano, G. Bencivenni, G. Bartoli, A.
Mazzanti, P. Melchiorre, Angew. Chem. 2008, 120,
8831–8834; Angew. Chem. Int. Ed. 2008, 47, 8703–8706;
h) J. Wang, A. Ma, D. Ma, Org. Lett. 2008, 10, 5425–
5428; i) W. Ye, Z. Jiang, Y. Zhao, S. L. M. Goh, D.
Leow, Y.-T. Soh, C.-H. Tan, Adv. Synth. Catal. 2007,
349, 2454–2458.
[5] For selected examples, see: a) A. B. Pritzius, B. Breit,
Angew. Chem. 2015, 127, 3164–3168; Angew. Chem.
Int. Ed. 2015, 54, 3121–3125; b) M. Roggen, E. M. Car-
reira, Angew. Chem. 2012, 124, 8780–8783; Angew.
Chem. Int. Ed. 2012, 51, 8652–8655; c) N. Gao, S.
Zheng, W. Yang, X. Zhao, Org. Lett. 2011, 13, 1514–
1516; d) Y. Fujiwara, J. Sun, G. C. Fu, Chem. Sci. 2011,
2, 2196–2198; e) S. Zheng, W. Huang, N. Gao, R. Cui,
M. Zhang, X. Zhao, Chem. Commun. 2011, 47, 6969–
6971; f) J. Sun, G. C. Fu, J. Am. Chem. Soc. 2010, 132,
4568–4569; g) Y. Yatsumonji, Y. Ishida, A. Tsubouchi,
T. Takeda, Org. Lett. 2007, 9, 4603–4606.
[6] For selected examples, see: a) D. Hack, P. Chauhan, K.
Deckers, Y. Mizutani, G. Raabe, D. Enders, Chem.
Commun. 2015, 51, 2266–2269; b) D. Hack, P. Chauhan,
K. Deckers, G. N. Hermann, L. Mertens, G. Raabe, D.
Enders, Org. Lett. 2014, 16, 5188–5191; c) Z. Zhou, X.
Feng, X. Yin, Y.-C. Chen, Org. Lett. 2014, 16, 2370–
2373; d) X. Li, X. Li, F. Peng, Z. Shaoa, Adv. Synth.
Catal. 2012, 354, 2873–2885; e) A.-B. Xia, D.-Q. Xu, C.
Wu, L. Zhao, Z.-Y. Xu, Chem. Eur. J. 2012, 18, 1055–
1059; f) S. Belot, A. Quintard, N. Krause, A. Alexakis,
Adv. Synth. Catal. 2010, 352, 667–695.
[7] a) E. M. P. Silva, A. M. S. Silva, Synthesis 2012, 44,
3109–3128; b) A. G. Csµkþ, G. Herrµn, M. C. Murcia,
Chem. Soc. Rev. 2010, 39, 4080–4102; for remote 1,6-
stereocontrol in conjugate addition, see: c) M. J. Lear,
Y. Hayashi, ChemCatChem 2013, 5, 3499–3501.
[8] a) S. Shaw, J. D. White, Org. Lett. 2015, 17, 4564–4567;
however, copper-catalyzed 1,4-addition of dialkylzincs
to linear dienones was reported: b) M. S. T. Morin, T.
Vives, O. BaslØ, C. CrØvisy, V. Ratovelomanana-Vidal,
M. Mauduit, Synthesis 2015, 47, 2570–2577.
Experimental Section
A solution of catalyst C13 or C14 (1.0 mol%) and acceptor
1 or yn-enone 2 (0.3 mmol for 1 and 0.25 mmol for 2) in di-
chloromethane or toluene (0.1M) was stirred at r.t. for 15–
20 min. Then a solution of thiol (1.2–1.5 equiv) in the same
solvent (0.6M) was added dropwise and the resulting homo-
genous mixture was stirred for 20 h at r.t. The reaction mix-
ture was then diluted with about an equal volume of chloro-
form and passed through a plug of silica gel (5–10 g). Elu-
tion by a total volume of 100 mL chloroform afforded crude
product, which was further purified using column chroma-
tography (silica gel, hexanes/AcOEt, 15:1, v/v). Enantiomer-
ic excess was determined using HPLC on chiral stationary
phase (AD-H, OD-H).
Acknowledgements
We thank National Science Center (NCN) Poland for fund-
ing, grant No. 2011/03/D/ST5/05766. We are grateful to Prof.
Tadeusz Lis for X-ray study of 3g, Miss. Aleksandra J.
Wierzba for preparation of catalyst C3 and Dr. Małgorzata
Serwadczak for the DSC analysis of 3g.
1294
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2016, 358, 1289 – 1295