950
P. Magnus et al. / Tetrahedron Letters 43 (2002) 947–950
11. Renauld, J.-L.; Aubert, C.; Malacria, M. Tetrahedron
Martin, S. F. J. Heterocyclic Chem. 1994, 31, 679; (p)
1999, 55, 5113.
Brands, K. M. J.; DiMichele, L. M. Tetrahedron Lett.
1998, 39, 1677.
5. Winkler, J. D.; Axten, J. M. J. Am. Chem. Soc. 1998,
120, 6425.
6. Martin, S. F.; Humphrey, J. M.; Ali, A.; Hillier, M. C. J.
Am. Chem. Soc. 1999, 121, 866.
7. Kobayashi, J.; Watanabe, D.; Kawasaki, N.; Tsuda, M.
J. Org. Chem. 1997, 62, 9236. For recent synthetic
approaches, see: Fu¨rstner, A.; Guth, O.; Rumbo, A.;
Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108. Nagata,
T.; Nishida, A.; Nakagawa, M. Tetrahedron Lett. 2001,
42, 8345.
12. Schore, N. E.; Knudsen, M. J. J. Org. Chem. 1987, 52,
569.
13. Flynn, D. L.; Zelle, R. E.; Grieco, P. A. J. Org. Chem.
1983, 48, 2424.
14. Morgans, D. J., Jr.; Stork, G. Tetrahedron Lett. 1979,
1959.
15. (a) Taylor, E. C.; Macor, J. E.; Pont, J. L. Tetrahedron
1987, 43, 5145; (b) Pe´rez, D.; Bure´s, G.; Guitia´n, E.;
Castedo, L. J. Org. Chem. 1996, 61, 1650.
16. Pagenkopf, B. L.; Belanger, D. B.; O’Mahony, D. J. R.;
Livinghouse, T. Synthesis 2000, 1009.
17. It appears as though the product 10 is complexed to
cobalt residues, and purification of the product leads to
extensive decomposition. Removal of the cobalt residues
by washing with aqueous EDTA doubles the yield of 10.
18. Treatment of the amide analog 16a with the n-BuSMe
accelerated Pauson–Khand reaction conditions did not
produce any of the tricyclic amide 17a. It seems that the
added conformational rigidity of the amide linking chain
is sufficient to prevent cyclization.
8. For more recent review articles, see: Schore, N. E. Com-
prehensive Organometallic Chemistry II; Hegedus, L. S.,
Ed.; Elsevier: Oxford, UK, 1995; Vol. 12, p. 703. Brum-
mond, K. M.; Kent, J. L. Tetrahedron 2000, 56, 3263.
Geis, O.; Schmalz, H.-G. Angew. Chem., Int. Ed. Engl.
1998, 37, 911. Schore, N. E. Chem. Rev. 1988, 1081. For
our earlier work on the stereoselectivity and mechanistic
postulate, see: Exon, C.; Magnus, P. J. Am. Chem. Soc.
1983, 105, 2477. Magnus, P.; Exon, C.; Albaugh-Robert-
son, P. Tetrahedron 1985, 41, 5861. Magnus, P.; Principe,
L. M. Tetrahedron Lett. 1985, 26, 4851. Recent computa-
tional aspects: Yamanaka, M.; Nakamura, E. J. Am.
Chem. Soc. 2001, 123, 1703. Breczinski, P. M.; Stumpf,
A.; Hope, H.; Krafft, M. E.; Casalnuovo, J. A.; Schore,
N. E. Tetrahedron 1999, 55, 6797. Adrio, J.; Rivero, M.
R.; Carretero, J. C. Angew. Chem., Int. Ed. Engl. 2000,
39, 2906. Recent developments in cobalt catalysis of the
Pauson–Khand reaction, see: Krafft, M. E.; Bon˜aga, L.
V. R.; Hirosawa, C. J. Org. Chem. 2001, 66, 3004.
9. Balsells, J.; Va´zquez, J.; Moyano, A.; Perica`s, M. A.;
Riera, A. J. Org. Chem. 2000, 65, 7291. Balsells, J.;
Moyano, A.; Riera, A.; Perica`s, M. A. Org. Lett. 1999, 1,
1981. Becker, D. P.; Flynn, D. L. Tetrahedron Lett. 1993,
34, 2087. Brown, S. W.; Pauson, P. L. J. Chem. Soc.,
Perkin Trans. 1 1990, 1205. Jeong, N.; Yoo, S.; Lee, S. J.;
Lee, S. H.; Chung, Y. K. Tetrahedron Lett. 1991, 32,
2137. Kim, J. W.; Chung, Y. K. Synthesis 1998, 142.
Arjona, O.; Csa´ky¨, A. G.; Medel. R.; Plumet, J. Tetra-
hedron Lett. 2001, 42, 3085. Hiroi, K.; Watanabe, T.
Heterocycles 2001, 54, 73. Witulski, B.; Gossmann, M.
Synlett 2000, 1793. N–O Linked tethers, see; Koenig, S.
G.; Leonard, K. A.; Lo¨we, R. S.; Austin, D. J. Tetra-
hedron Lett. 2000, 41, 9393. Jeong, N.; Seo, S. D.; Shin,
J. Y. J. Am. Chem. Soc. 2000, 122, 10220. Cassayre, J.;
Zard, S. Z. J. Am. Chem. Soc. 1999, 121, 6072.
19. Sugihara, T.; Yamada, M.; Yamaguchi, M.; Nishizawa,
M. Synlett 1999, 771. Intramolecular sulfide participa-
tion: Krafft, M. E.; Scott, I. L.; Romero, R. H.; Feibel-
mann, S.; Van Pelt, C. E. J. Am. Chem. Soc. 1993, 115,
7199.
1
20. 17. IR (film) 2976, 1718, 1701, 1688 cm−1. H NMR (500
MHz, CDCl3) l 7.59 (2H, d, J=8 Hz), 7.30 (2H, d, J=8
Hz), 5.82 (1H, s), 4.05 (1H, m), 3.93 (1H, d, J=12.1 Hz),
3.78 (1H, m), 3.12 (1H, br q), 2.74 (1H, m), 2.39 (3H s),
2.37–2.28 (2H, m), 2.16 (1H, m), 1.95 (1H, m), 1.45 (9H,
s), 1.42 (2H, m). 13C NMR (125 MHz, CDCl3) l 202.0,
175.4, 144.0, 133.0, 129.9, 127.3, 80.3, 66.1, 55.7, 46.3,
28.3, 28.1, 21.4, 40.9, 38.1, 25.6, 22.0, 20.6. HRMS calcd
for C22H29N2O5S (MH+) 433.1786. Found 433.1786. 20.
IR (film) 2923, 1754, 1726, 1711 cm−1 1H NMR (300
.
MHz, CDCl3) l 8.27 (2H, d, J=8 Hz), 7.68 (2H, d, J=8
Hz), 7.44 (2H, d, J=8 Hz), 7.37 (2H, d, J=8 Hz), 4.63
(1H, s), 3.70 (4H, m), 2.69 (1H, dd, J=12.7 Hz, J=53.3
Hz), 2.46 (3H, s), 2.45–2.38 (2H, m), 2.17 (1H, d, J=20
Hz), 2.07 (1H m), 1.95 (1H, m), 1.67 (1H, m), 1.52 (2H,
m).
21. Reduction of 17 with Li/NH3/THF has given inconclu-
sive results.
10. Ishizaki, M.; Iwahara, K.; Niimi, Y.; Satoh, H.; Hoshino,
O. Tetrahedron 2001, 57, 2729.