r = 2.83 ꢃ 10ꢁ10 m. From these data, we obtained E D 5.6 kJ molꢁ1
.
Experimental
The resultant energy is close to our previously reported value, and thus
it is shown that the interaction is reproducible by simple estimation of
the dipole–dipole interaction. Furthermore, the rotational energy of
the O–H group was estimated to be 467 J (E = h2/8p2I ꢃ J(J + 1),
I = m ꢃ rOH ꢃ cos 14.51 (+H–O–C ꢁ 901)). Thus, the dipole–dipole
interaction is enough to stop the OH rotation.
Melting points: Yanaco MP-500D apparatus in Ar sealed
tubes; values are uncorrected.
NMR: JEOL AL-300 (300.4 MHz for 1H, 75.6 MHz for 13
C
and 283.0 MHz for 19F, with TMS and CFCl3 as internal
references, respectively).
1 H. Takemura, M. Kotoku, M. Yasutake and T. Shinmyozu,
Eur. J. Org. Chem., 2004, 2019–2024.
2 G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond, in
Structural Chemistry and Biology, International Union of Crystallo-
graphy Book Series, Oxford University Press, Oxford, 1999,
pp. 202–205.
IR: JASCO IR-FT/IR 4200 (CCl4, in NaCl cells (0.1 and
0.5 mm) at 25 1C).
FAB MS: JEOL JMS-SX/SX102A.
Elemental analysis: the Service Centre of the Elementary
Analysis of Organic Compounds affiliated with the Faculty of
Science, Kyushu University.
3 (a) M. Zahedi-Tabrizi, F. Tayyari, Z. Moosavi-Tekyeh, A. Jalali
and S. Faramarz Tayyari, Spectrochim. Acta, Part A, 2006, 65,
387–396; (b) Z. Mielke, S. Coussan, K. Mierzwicki, P. Roubin and
M. Saldyka, J. Phys. Chem. A, 2006, 110, 4712–4718;
(c) W. Caminati, S. Melandri, A. Maris and P. Ottaviani, Angew.
Chem., Int. Ed., 2006, 45, 2438–2442; (d) W. Caminati, J. C. Lopez,
J. L. Alonso and J.-U. Grabow, Angew. Chem., Int. Ed., 2005, 44,
3840–3844; (e) R. L. Waterland, M. D. Hurley, J. A. Misner,
T. J. Wallington, S. M. L. Melo, K. Strong, R. Dumoulin,
L. Castera, N. L. Stock and S. A. Mabury, J. Fluorine Chem.,
2005, 126, 1288–1296; (f) I. Rozas, I. Alkorta and J. Elguero,
J. Phys. Chem. A, 2001, 105, 10462–10467; (g) A. Longarte,
J. A. Fernandez, I. Unamuno, F. Basterrechea and F. Castano,
J. Chem. Phys., 2001, 115, 270–276; (h) W. Caminati, S. Melandri,
I. Rossi and P. G. Favero, J. Am. Chem. Soc., 1999, 121,
10098–10101; (i) M. Pham, M. Gdaniec and T. Po"onski,
J. Org. Chem., 1998, 63, 3731–3734; (j) F. Lahmani,
A. Zehnacker, G. Denisov and G. G. Furin, J. Phys. Chem.,
1996, 100, 8633–8639; (k) L.-H. Xu, G. T. Fraser, F. J. Lovas,
R. D. Suenram, C. W. Gillies, H. E. Warner and J. Z. Gillies,
Chem. Phys., 1995, 103, 9541–9548; (l) E. Vajda and I. Hargittai,
J. Phys. Chem., 1993, 97, 70–76; (m) K.-M. Marstokk and
H. Møllendal, J. Mol. Struct., 1977, 40, 1–11; (n) G. L. Carlson,
W. G. Fateley, A. S. Manocha and F. F. Bentley, J. Phys. Chem.,
1972, 76, 1553–1557.
4 L. Shimoni and J. P. Glusker, Struct. Chem., 1994, 5, 383–397.
5 J. D. Dunitz and R. Taylor, Chem.–Eur. J., 1997, 3, 89–98.
6 K. Reichenbacher, H. I. Suss and J. Hulliger, Chem. Soc. Rev.,
2005, 34, 22–30.
7 G. Althoff, J. Ruiz, V. Rodriguez, G. Lopez, J. Perez and
C. Janiak, CrystEngComm, 2006, 8, 662–665.
8 D. O’Hagan and H. S. Rzepa, Chem. Commun., 1997, 645–652.
9 T. J. Barbarich, B. G. Nolan, S. Tsujioka, S. M. Miller, O. P. Anderson
and S. H. Strauss, J. Fluorine Chem., 2001, 112, 335–342.
10 C. Bartolome, P. Espinet and J. M. Martın-Alvarez, Chem. Commun.,
2007, 4384–4386.
11 C. Li, S.-F. Ren, J.-L. Hou, H.-P. Yi, S.-Z. Zhu, X.-K. Jiang and
Z.-T. Li, Angew. Chem., Int. Ed., 2005, 44, 5725–5729.
12 (a) B. Bernet and A. Vasella, Helv. Chim. Acta, 2007, 90,
1874–1888; (b) M. A. Biamonte and A. Vasella, Helv. Chim. Acta,
1998, 81, 695–716.
Chromatography was performed using the YAMAZEN
YFLC-254-GRII medium-pressure liquid chromatography system.
2 was purchased from Tokyo Chemical Industry Co., Ltd.
and used without purification.
2-Fluorophenyldiphenylmethanol (1)
This compound was obtained by the reaction of methyl 2-fluoro-
benzoate and phenyl magnesium iodide, and its physical and
spectral properties were consistent with those in the literature.13
2-Fluorophenyldiphenylmethane (3)
This compound was prepared by the reduction of 1 by Et3SiH in
CH3COOH.14 Compound 1 (100.2 mg, 0.36 mmol) was
dissolved in 1.8 mL of AcOH, and 0.4 mL of Et3SiH was added.
The mixture was heated under reflux for 40 h. The mixture
was then evaporated in vacuo and the resultant brown oil
was chromatographed on silica gel using hexane–CH2Cl2
(50 : 50 volume) as the eluent. Colorless crystals, 28.0 mg
(29.6%). m.p. 84.3–84.7 1C (lit. 85–87 1C15). dH (300 MHz,
CDCl3, Me4Si): 7.31–6.91 (m, 14H, ArH) and 5.83 (s, 1H, CH).
dC (75.4 MHz, CDCl3, Me4Si): 160.7 (d, J = 246.8 Hz), 142.6
(s), 130.9 (d, J = 3.6 Hz), 129.3 (s), 128.4 (s), 128.1 (d, J =
8.2 Hz), 126.5 (s), 123.8 (d, J = 3.7 Hz), 115.3 (d, J = 21.9 Hz)
and 49.4 (s). dF (282.2 MHz, CDCl3, CFCl3): ꢁ116.86 (m).
HRMS (FAB) calc. for C19H15F 262.1158, found 262.1155.
Crystallographic data for 1. C19H15OF, Mr = 278.31 g molꢁ1
,
platelet crystal (grown from n-hexane), size 0.53 ꢃ 0.45 ꢃ
0.37 mm, monoclinic, space group P21/n (#14), a = 8.2379(3),
b = 10.9417(4), c = 15.6797(4) A, V = 1411.10(8) A3, Z = 4,
rcalc = 1.310 g cmꢁ3, mCu-Ka = 0.88 cmꢁ1, F(000) = 584.00,
T = 113 K using the o-2y scan technique to a maximum 2y
value of 54.51. A total of 3160 reflections were collected. The
final cycle of the full-matrix least-squares refinement was
based on 2749 observed reflections (I 4 2s(I)) and 194
variable parameters, and converged with unweighted and
weighted agreement factors of R = 0.0544, Rw = 0.1797
and GOF = 1.409. The maximum and minimum peaks on the
final difference Fourier map corresponded to 1.054 and
13 A. Khvorost, D. Lemenovskii, N. Ustynyu, K. Rufanov and
J. Kipke, Z. Naturforsch., B: Chem. Sci., 2002, 57, 1207–1214.
14 P. Huszthy, K. Lempert and G. Simig, J. Chem. Soc., Perkin Trans. 2,
1985, 1351–1354.
15 E. Bergmann, Recl. Trav. Chim. Pays-Bas, 1939, 58, 863–870.
16 A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
17 (a) G. Ferguson, J. F. Gallagher, C. Glidewell and
S. N. Scrimgeour, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun., 1992, 48, 1272–1275; (b) H. Serrano-Gonzalez,
K. D. M. Harris, C. C. Wilson, A. E. Aliev, S. J. Kitchin,
B. M. Kariuki, M. Bach-Verges, C. Glidewell, E. J. MacLean
and W. W. Kagunya, J. Phys. Chem. B, 1999, 103, 6215–6223.
18 (a) H. Takemura, S. Nakashima, N. Kon, M. Yasutake,
T. Shinmyozu and T. Inazu, J. Am. Chem. Soc., 2001, 123,
9293–9298; (b) H. Plenio, Chem. Rev., 1997, 97, 3363–3384 and
references therein.
ꢁ0.530 eꢁ
A
ꢁ3, respectively.w
References
z Based on the crystallographic analysis data, the dipole–dipole inter-
action energy of the O–H and C–F groups in compound 1 was roughly
estimated (Fig. 3). Here, y1 = 70.31, y2 = 109.11, f = 9.71, m1 = 4.7 ꢃ
10ꢁ30 C m, m2 = 5.0 ꢃ 10ꢁ30 C m, e0 = 8.85 ꢃ 10ꢁ12 C2 Jꢁ1 mꢁ1 and
19 An example in which the reduction of JC–F and a high field shift of
the 19F NMR signal by a hydrogen bond was found in recent
research: H. Takemura, R. Ueda and T. Iwanaga, J. Fluorine
Chem., 2009, 130, 684–688.
ꢂc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2009
2006 | New J. Chem., 2009, 33, 2004–2006