᎐
᎐
᎐
᎐
᎐
Oxford, 1995, vol. 3, p. 1; (e) H. Schmidbaur, A. Grohmann and
[ppn] [cyclo-{Pt(ꢀ-C᎐CC᎐CAuC᎐CC᎐C)(dppe)} ] 11. [ppn]-
᎐
᎐
᎐
4
4
M. E. Olmos, in Gold: Progress in Chemistry, Biochemistry and
Technology, ed. H. Schmidbaur, Wiley, Chichester, 1999, p. 647.
2 H. Schmidbaur, Gold Bull., 1990, 23, 11; H. Schmidbaur, Pure Appl.
Chem., 1993, 65, 691.
3 (a) G. Jia, R. J. Puddephatt, J. J. Vittal and N. C. Payne,
Organometallics, 1993, 12, 263; (b) G. Jia, R. J. Puddephatt,
J. J. Vittal and N. C. Payne, Organometallics, 1993, 12, 4771.
4 M. J. Irwin, J. J. Vittal and R. J. Puddephatt, Organometallics, 1997,
16, 3541.
[Au(acac)2] (135 mg, 0.15 mmol) in CH2Cl2 (10 ml) was added
via syringe pump over a period of 1 h to Pt(C᎐CC᎐CH) (dppe)
(100 mg, 0.15 mmol) in the same solvent (20 ml). After evapor-
ation to dryness, a CH2Cl2 extract of the residue was added
dropwise to cold hexane, to give white [ppn]4[cyclo-{Pt(µ-
C᎐CC᎐CAuC᎐CC᎐C)(dppe)} ] 11 (191 mg, 91%). Anal. found:
C, 58.38; H, 4.08, N, 0.99; C280H216Au4N4P16Pt4 (M = 5697)
᎐
᎐
᎐
᎐
2
᎐
᎐
᎐
᎐
᎐
᎐
᎐
᎐
4
᎐
requires: C, 58.98; H, 3.82; N, 0.98%. IR (Nujol): ν(C᎐C) 2142,
᎐
5 G. C. Jia, R. J. Puddephatt, J. D. Scott and J. J. Vittal,
Organometallics, 1993, 12, 3565.
2073 cmϪ1. H NMR (d6-dmso): δ 2.46 (m, CH2), 7.15–7.94
1
(m, Ph). 13C NMR (d6-dmso): δ 26.99 (m, PCH2), 60.31, 76.08,
6 M.-A. MacDonald, R. J. Puddephatt and G. P. A. Yap,
Organometallics, 2000, 19, 2194 and references therein.
7 (a) F. Paul and C. Lapinte, Coord. Chem. Rev., 1998, 178–180, 427;
(b) F. Barigelletti and L. Flamigni, Chem. Soc. Rev., 2000, 29, 1.
8 S. Kheradmandan, K. Heinze, H. W. Schmalle and H. Berke,
Angew. Chem., 1999, 111, 2412; S. Kheradmandan, K. Heinze,
H. W. Schmalle and H. Berke, Angew. Chem., Int. Ed., 1999, 38,
2270.
᎐
᎐
97.26 (3 × m, 3 × ᎐C), 99.56 (s, ᎐CAu), 126.10–133.74 (m, Ph).
᎐
᎐
31P NMR (d6-dmso): δ 21.39 [s, J(PPt) 107 Hz, ppn], 43.03
[s, J(PPt) 2289 Hz, dppe] . ES mass spectrum (CH2Cl2, m/z):
2310.5 [11 Ϫ 2ppn]2Ϫ.
Structure determinations
9 (a) M. Brady, W. Weng, Y. Zhou, J. W. Seyler, A. L. Amoroso,
A. M. Arif, M. Böhme, G. Frenking and J. A. Gladysz, J. Am. Chem.
Soc., 1997, 119, 775; (b) R. Dembinski, T. Bartik, B. Bartik,
M. Jaeger and J. A. Gladysz, J. Am. Chem. Soc., 2000, 122, 810.
10 (a) N. Le Narvor, L. Toupet and C. Lapinte, J. Am. Chem. Soc.,
1995, 117, 7129; (b) F. Coat, M.-A. Guillevic, L. Toupet, F. Paul
and C. Lapinte, Organometallics, 1997, 16, 5988; (c) F. Coat,
M. Guillemot, F. Paul and C. Lapinte, J. Organomet. Chem., 1999,
578, 76.
11 (a) M. I. Bruce, P. J. Low, K. Costuas, L.-K. Halet, S. P. Best and
G. A. Heath, J. Am. Chem. Soc., 2000, 122, 1949; (b) M. I. Bruce,
B. D. Kelly, B. W. Skelton and A. H. White, J. Organomet. Chem.,
2000, 604, 150.
12 (a) T. B. Peters, J. C. Bohling, A. M. Arif and J. A. Gladysz,
Organometallics, 1999, 18, 3261; (b) W. Mohr, J. Stahl, F. H. Ampel
and J. A. Gladysz, Inorg. Chem., 2001, 40, 3263; (c) J. C. Bohling,
T. B. Peters, A. M. Arif, F. Hampel and J. A. Gladysz,
in Coordination Chemistry at the Turn of the Century, ed.
G. Ondrejovic and A. Sirota, Slovak Technical University Press,
Bratislava, Slovakia, 1999, p. 47.
Full spheres of data were measured at ca. 153 K using a Bruker
AXS CCD area-detector instrument and merged to unique sets
after “empirical”/multiscan absorption corrections (proprietary
software). Ntot data gave N unique (Rint quoted), No with F >
4σ(F) being used in the refinements. All data were measured
using monochromatic Mo-Kα radiation, λ 0.71073 Å. In the
refinements, anisotropic thermal parameter forms were used for
the non-hydrogen atoms, (x, y, z, Uiso)H being constrained at
estimated values.
In all cases, conventional residuals R, Rw on |F| (statistical
weights) are quoted. Neutral atom complex scattering factors
were used: computation was carried out using the XTAL 3.7 pro-
gram system.31 Pertinent results are given in the figures (which
show 50% thermal ellipsoids for the non-hydrogen atoms,
hydrogen atoms having arbitrary radii of 0.1 Å) and tables.
᎐
᎐
᎐
Crystal data for 1. 0.93Au(C᎐CC᎐CH)(PPh )ؒ0.07AuI-
᎐
3
13 R. J. Puddephatt, Chem. Commun., 1998, 1055.
᎐
(PPh )ؒ0.5PhMe ᎐ (C H AuP) ؒ(C18H15AuIP)0.07ؒC7H8, M =
᎐
3
22 16
0.93
14 C. P. McArdle, M. J. Irwin, M. C. Jennings and R. J. Puddephatt,
Angew. Chem., 1999, 111, 3571; C. P. McArdle, M. J. Irwin,
M. C. Jennings and R. J. Puddephatt, Angew. Chem., Int. Ed., 1999,
38, 3376.
15 M. J. Irwin, L. M. Rendina, J. J. Vittal and R. J. Puddephatt, Chem.
Commun., 1996, 1281.
16 M. J. Irwin, G. Jia, N. C. Payne and R. J. Puddephatt,
Organometallics, 1996, 15, 51.
17 (a) R. Usón, A. Laguna and J. Vicente, J. Organomet. Chem., 1977,
131, 471; (b) R. Usón, A. Laguna, M. Laguna and E. Fernández,
J. Chem. Soc., Dalton Trans., 1982, 1971.
559.8. Monoclinic, space group P21/n, a = 9.9695(5), b =
27.819(1), c = 15.4860(7) Å, β = 90.242(1)Њ, V = 4295 Å3 for
Z = 8, ρ = 1.731 g cmϪ3. Crystal: 0.35 × 0.13 × 0.13 mm, µ =
70 cmϪ1, ‘T ’min,max = 0.34, 0.70. 2θ = 68Њ, Ntot = 58585, N = 16831
(Rint = 0.033), No = 12380, R = 0.040, Rw = 0.048.
Variata. As described above, significant residues in the
vicinities of the gold atoms were modelled in terms of cocrystal-
lised iodide.
18 H. Schmidbaur, A. Wohlleben, F. Wagner, O. Orama and
G. Huttner, Chem. Ber., 1977, 110, 1748.
19 J. Vicente and M. T. Chicote, Coord. Chem. Rev., 1999, 193–195,
1143.
20 N. C. Payne, R. Ramachandran and R. J. Puddephatt, Can.
J. Chem., 1995, 73, 6.
21 M. Akita, M.-C. Chung, A. Sakurai, S. Sugimoto, M. Terada,
M. Tanaka and Y. Moro-oka, Organometallics, 1997, 16, 4882.
22 M. I. Bruce, M. Ke, P. J. Low, B. W. Skelton and A. H. White,
Organometallics, 1998, 17, 3539.
᎐
᎐
᎐
Crystal data for 9. {Cu (µ-dppm) }(µ -I)(µ -C᎐CC᎐CAu-
᎐
3
3
3
3
᎐
᎐
᎐
C᎐CC᎐CH) ᎐ C H AuCu IP , M = 1764.8. Monoclinic, space
᎐
᎐
᎐
83 67
3
6
group P21/c, a = 30.858(2), b = 26.304(1), c = 19.0257(9) Å, β =
105.150(1)Њ, V = 14906 Å3 for Z = 8, ρ = 1.573 g cmϪ3. Crystal:
0.25 × 0. 13 × 0.06 mm, µ = 33.9 cmϪ1, ‘T ’min,max = 0.55, 0.72.
2θ = 58Њ, Ntot = 166649, N = 38015 (Rint = 0.037), No = 22941,
R = 0.045, Rw = 0.043.
CCDC reference numbers 168997 and 168998.
lographic data in CIF or other electronic format.
23 M. Tanimoto, K. Kuchitsu and Y. Morino, Bull. Chem. Soc. Jpn.,
1971, 44, 386.
24 M. I. Bruce, K. Costuas, J.-F. Halet, B. C. Hall, P. J. Low,
B. K. Nicholson, B. W. Skelton and A. H. White, J. Chem. Soc.,
Dalton Trans., 2002, 383.
25 S. J. Cantrill, A. R. Pease and J. F. Stoddart, J. Chem. Soc., Dalton
Trans., 2000, 3715 and ref. 25 and 26 therein.
26 See, for example: (a) J. Diez, M. P. Gamasa, J. Gimeno, A. Aguirre
and S. García-Granda, Organometallics, 1991, 10, 380; (b) V. W.-W.
Yam, W. K.-M. Fung and K. K. Cheung, Organometallics, 1998, 17,
3293 and references cited therein.
Acknowledgements
We thank the Australian Research Council for support of
this work. B. C. H. and M. E. S. acknowledge receipt of Post-
graduate Research Awards.
27 W. Henderson, J. S. McIndoe, B. K. Nicholson and P. J. Dyson,
J. Chem. Soc., Dalton Trans., 1998, 519.
28 M. I. Bruce, B. K. Nicholson and O. bin Shawkataly, Inorg. Synth.,
1989, 26, 325.
29 J. Vicente and M. T. Chicote, Inorg. Synth., 1998, 32, 172.
30 N. Bresciani, G. Marsich, G. Nardin and L. Randaccio, Inorg. Chim.
Acta, 1974, 10, L5.
31 The XTAL 3.7 System, ed. S. R. Hall, D. J. du Boulay and R. Olthof-
Hazekamp, University of Western Australia, Perth, 2000.
References
1 (a) R. J. Puddephatt, The Chemistry of Gold, Elsevier, Amsterdam,
1978; (b) R. J. Puddephatt, in Comprehensive Organometallic
Chemistry, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel,
Pergamon, Oxford, 1982, vol. 2, p. 756; (c) G. K. Anderson,
Adv. Organomet. Chem., 1982, 20, 39; (d ) A. Grohmann and
H. Schmidbaur, in Comprehensive Organometallic Chemistry II,
ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon,
J. Chem. Soc., Dalton Trans., 2002, 995–1001
1001