K. E. Rittle et al. / Bioorg. Med. Chem. Lett. 13 (2003) 3477–3482
3481
Acknowledgements
We are very grateful to Peter Williams and Phil San-
derson for their helpful scientific discussions and Laurie
Rittle for her assistance in the preparation of this
manuscript.
Figure 4. Pyridine N-oxide 6-chloropyrazinone P3P2 scaffold.
References and Notes
1. Coburn, C. A. Exp. Opin. Ther. Pat. 2001, 11, 1.
2. Sanderson, P. E. J. Med. Res. Rev. 1999, 2, 179.
3. Hirsh, J.; Fuster, V. Circulation 1994, 89, 1449.
4. Hirsh, J.; Fuster, V. Circulation 1994, 89, 1469.
5. Menear, K. Curr. Med. Chem. 1998, 5, 457.
6. Sanderson, P. E. J.; Dyer, D. L.; Naylor-Olsen, A. M.;
Vacca, J. P.; Gardell, S. J.; Lewis, S. D.; Lucas, B. J., Jr.; Lyle,
E. A.; Lynch, J. J., Jr.; Mulichak, A. M. Bioorg. Med. Chem.
Lett. 1997, 7, 1497.
7. Kimball, S. D. Blood Coagul. Fibrin. 1995, 6, 511.
8. Hauptman, J.; Markwardt, F. Semin. Thromb. Hemostasis
1992, 18, 200.
9. Adang, A. E. P.; de Man, A. P. A.; Vogel, G. M. T.;
Grootenhuis, P. D. J.; Smit, M. J.; Peters, C. A. M.; Visser,
A.; Rewinkel, J. B. M.; van Dinther, T.; Lucas, H.; Kelder, J.;
van Aelst, S.; Meuleman, D. G.; van Boekel, C. A. A. J. Med.
Chem. 2002, 45, 4419.
10. Sanderson, P. E. J.; Cutrona, K. J.; Dorsey, B. D.; Dyer,
D. L.; McDonough, C. M.; Naylor-Olsen, A. M.; Chen, I.-W.;
Chen, Z.; Cook, J. J.; Gardell, S. J.; Krueger, J. A.; Lewis,
S. D.; Lin, J. H.; Lucas, R. J., Jr.; Lyle, E. A.; Lynch, J. J., Jr.;
Stranieri, M. T.; Vastag, K.; Shafer, J. A.; Vacca, J. P. Bioorg.
Med. Chem. Lett. 1998, 8, 817.
11. Lumma, W. C.; Witherup, K. M.; Tucker, T. J.; Brady,
S. F.; Sisko, J. T.; Naylor-Olsen, A. M.; Lewis, S. D.; Lucas,
B. J.; Vacca, J. P. J. Med. Chem. 1998, 41, 1011.
12. Lee, K.; Jung, W.-H.; Park, C. W.; Hong, C. Y.; Kim,
I. C.; Kim, S.; Oh, Y. S.; Kwon, O. H.; Lee, S.-H.; Park, H. D.;
Kim, S. W.; Lee, Y. H.; Yoo, Y. J. Bioorg. Med. Chem. Lett.
1998, 8, 2563.
distance of four additional H-bond acceptors: the
Gly216 backbone carbonyl oxygen (2.9 A O–N), the
carbonyl oxygen of the inhibitor P1P2 amide linker (3.1
A O–N), the P2 pyridinone carbonyl oxygen (3.1 A O–
N) and a crystallographically resolved water molecule
(3.5 A O–N). The ability of the protonated amino group
to engage in so many hydrogen–bonding interactions
explains the extraordinary potency of 24, and the salt
bridge formed with Glu192 accounts for its dramatic
selectivity over trypsin, which has a neutral glutamine
residue at this position.
Investigation into the generality of this potency enhan-
cing effect using other P3P2 scaffolds was initiated. As
was found for 23 over 22, the introduction of chlorine
into the 3-position of the phenyl ring led to an 18-fold
improvement in potency over its unsubstituted parent
(26 vs 27) in the peptide series d-PhePro18À20 (Table 2).
Although the simple o-aminomethyl derivative 28 had
modest potency (313 nM), addition of a 5-chloro group
(29) improved potency by nearly two orders of magni-
tude to 3.3 nM, selectivity from 339-fold to 1908-fold
and gave a very acceptable 2Â APTT (0.34 mM). How-
ever, homologation to 30, while improving selectivity by
2-fold, decreased potency by 19-fold.
13. Sanderson, P. E. J.; Lyle, T. A.; Cutrona, K. J.; Dyer,
D. L.; Dorsey, B. D.; McDonough, C. M.; Naylor-Olsen,
A. M.; Chen, I.-W.; Chen, Z.; Cook, J. J.; Cooper, C. M.;
Gardell, S. J.; Hare, T. R.; Krueger, J. A.; Lewis, D. L.; Lin,
J. H.; Lucas, B. J., Jr.; Lyle, E. A.; Lynch, J. J., Jr.; Stranieri,
M. T.; Vastag, K.; Yan, Y.; Shafer, J. A.; Vacca, J. P. J. Med.
Chem. 1998, 41, 4466.
The phenethylaminopyrazinone derivative 31 (Table 3)
was prepared for comparison to the corresponding
aminopyridine 32.13 Potency (0.13 vs 0.8 nM) and
selectivity (12,307-fold vs 1908-fold) were also improved
in this series, while efficacy in the 2Â APTT assay was
identical (0.41 mM).
14. 7a (cat. # 53944-9) and 7b (cat. # 53528-1) are now avail-
able from Aldrich.
This potency enhancing property was further exempli-
fied by the introduction of aminomethyl-5-chloro-
benzylamine in the P1 position of the recently published
P3P2 scaffold 3321 resulting in benzylamide (33a), one
of the most potent thrombin inhibitors to be prepared
in our laboratories (Fig. 4).
15. Lewis, S. D.; Ng, A. S.; Lyle, E. A.; Mellott, M. J.;
Appleby, S. D.; Brady, S. F.; Stauffer, K. J.; Sisko, J. T.; Mao,
S.-S.; Veber, D. F.; Nutt, R. F.; Lynch, J. J.; Cook, J. J.;
Gardell, S. J.; Shafer, J. A. Thromb. Haemost. 1995, 74, 1107.
16. Sanderson, P. E. J.; Cutrona, K. C.; Dyer, D. L.; Krueger,
J. A.; Kuo, L. C.; Lewis, S. D.; Lucas, B. J.; Yan, Y. Bioorg.
Med. Chem. Lett. 2003, 13, 161.
17. The a-thrombin-hirugen complex was used to bind 24 for
data collection. The crystal structure was solved at 1.8 A with
an R factor of 0.22.
Conclusion
18. Wiley, M. R.; Chirgadze, N. Y.; Clawson, D. K.; Craft,
T. J.; Gifford-Moore, D. S.; Jones, N. D.; Olkowski, J. L.;
Schacht, A. L.; Weir, L. C.; Smith, G. F. Bioorg. Med. Chem.
Lett. 1995, 5, 2835.
19. Lyle, T. A.; Chen, Z.; Appleby, S. D.; Freidinger, R. M.;
Gardell, S. J.; Lewis, S. D.; Li, Y.; Lyle, E. A.; Lynch, J. J.;
Mulichak, A. M.; Ng, A. S.; Naylor-Olsen, A. M.; Sanders,
W. M. Bioorg. Med. Chem. Lett. 1997, 7, 67.
The discovery of o-aminoalkylbenzylamides as a new
class of thrombin inhibitor P1 groups is described. The
interaction of 24 with the thrombin active site provides
insights into their unanticipated potency and selectivity
enhancing features, the generality of which extended
over several different P3P2 scaffolds. The pharmacody-
namic and pharmacokinetic properties of this new P1
class will be discussed in subsequent publications.
20. Das, J.; Kimball, S. D.; Hall, S. E.; Han, W.-C.; Iwano-