B. Ye et al. / Bioorg. Med. Chem. Lett. 14 (2004) 761–765
765
Table 5. Pharmacokinetic data for compound 1 and 39a
Haemost. Thromb. 1989, 9, 87. (b) Wu, Q.; Zhao, Z. Curr.
Drug Tar. 2002, 2, 27.
b
b
b
Number Cmax
(mM)
Tmax
(h)
T1/2
(h)
Clc
Vdssc
F
4. (a) Sancho, E.; Declerck, P. J.; Price, N. C.; Kelly, S. M.;
Booth, N. A. Biochemistry 1995, 34, 1064. (b) Mottonen,
J.; Strand, A.; Symersky, J.; Sweet, R. M.; Danley, D. E.;
Geoghegan, K. F.; Gerard, R. D.; Goldsmith, E. J.
Nature 1992, 355, 270.
5. Bjoerquist, P.; Ehnebom, J.; Inghardt, T.; Hasson, L.;
¨
Lindberg, M.; Linschoten, M.; Stroemqvist, M.; Deinum,
J. Biochemistry 1998, 37, 1227.
6. Blouse, G. E.; Perron, M. J.; Thompson, J. H.; Day, D. E.;
Link, C. A.; Shore, J. D. Biochemistry 2002, 41, 11997.
7. Salomaa, V.; Stinson, V.; Kark, J. D.; Folsom, A. R.;
Davis, C. E.; Wu, K. K. Circulation 1995, 91, 284.
8. (a) Erikson, L. A.; Fici, G. J.; Lund, J. E.; Bogle, T. P.;
Polites, H. G.; Marotti, K. R. Nature 1990, 346, 74. (b)
Wiman, B. Haemost. Thromb. 1995, 74, 71.
9. Schneiderman, J.; Sawdey, M. S.; Keeton, M. R.; Bordin,
G. M.; Bernstern, E. F.; Dilley, R. B.; Loskutoff, D. J.
Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 6998.
10. Frandesen, T. L.; Stephenes, R. W.; Pedersen, A. N.;
Engelholm, L. H.; Holst-Hansen, C.; Brunner, N. Drugs
Future 1998, 873.
11. Bajou, K.; Noel, A.; Gerard, R. D.; Masson, V.; Brunner,
N.; Holst-Hansen, C.; Skobe, M.; Fusening, N. E.; Car-
meliet, P.; Collen, D.; Foidart, J. M. Nat. Med. 1998, 4,
923.
12. Tsuchiya, H.; Katsuo, S.; Matsuda, E.; Sunamaya, C.;
Tomita, K.; Veda, Y.; Binder, B. Gen. Diag. Pathol. 1995,
141, 41.
(mL/min/kg) (L/kg) (%)d
1
39
0.16
0.48
3
3
3.0
2.8
4.84
10.4
0.4
1.33
23
43
a Compound administered in 94% PEG 300, 4% EtOH, and 2% water
at 0.5 mg/kg iv, 2 mg/kg po.
b Cmax, Tmax, and T1/2 for po.
c Cl and Vdss for iv.
d F% values are averaged from three rats.
tially may be attributed to the different assay systems
because we observed that in the presence of lipid-con-
taining plasma the compound was consistently more
potent. To examine the possibility that compound 39
might inhibit other enzymes of the coagulation cascade,
which could lead to enhanced clot lysis, we did test the
compound in the clot lysis assay in the absence of PAI-
1. The results showed that the compound 39 did not
alter clot lysis time (data not shown). Thus, it is unlikely
that compound 39 directly inhibits other enzymes in the
blood-clotting cascade. Further pharmacokinetic stud-
ies of 39 were performed in rats, and the results are
summarized in Table 5. Compound 39 has improved
bioavailability (43%) compared with 1, moderate clear-
ance rate (10.4 mL/min/kg), and good half-life (2.8 h).
13. Abrahamsson, T.; Nerme, V.; Stromqvist, M.; Akerblom,
B.; Legnehed, A.; Petterson, K.; Westin-Eriksson, A.
Haemost. Thromb. 1996, 75, 118.
14. (a) Eitzman, D. T.; Fag, W. P.; Lawrence, D. A.; Francis-
Chmura, A. M.; Shore, D.; Olson, S. T.; Ginsburg, D. J.
Clin. Invest. 1995, 95, 2416. (b) Guzzo, P. R.; Trova,
M. P.; Inghardt, T.; Linschoten, M. Tetrahedron. Lett.
2002, 43, 41.
15. (a) Charlton, P. Drugs Future 1997, 22, 45. (b) Folkes, A.;
Brown, D. S.; Canne, L. E.; Chan, J.; Engelhardt, E.;
Epshteyu, S.; Faint, R.; Goldec, J.; Hanel, A.; Kearneg,
P.; Leadhy, J. W.; Mac, M.; Matthews, D.; Prisbylla,
M. P.; Sanderson, J.; Simon, R. J.; Tesfai, Z.; Vicker, N.;
Wang, S.; Webb, R. R.; Charlton, P. Bioorg. Med. Chem.
Lett. 2002, 12, 1063. (c) Wang, S.; Golec, J.; Miller, W.;
Milutinovic, S.; Folkes, A.; Williams, S.; Brooks, T.;
Hardman, K.; Charlton, P.; Wren, S.; Spencer, J. Bioorg.
Med. Chem. Lett. 2002, 12, 2367. (d) Nanteuil, G. D.;
Lila-Ambroise, C.; Rupin, A.; Vallez, M.-O.; Verbeuren,
T. J. Bioorg. Med. Chem. Lett. 2003, 13, 1705.
In summary, we have explored the structure–activity
relationships around the novel PAI-1 inhibitor 2 by
modifying the A, B, and C segments. Initial optimiza-
tion of the C segment indicates that the aminomethyl
phosphonic acid could be replaced with amino-acids.
No improvement was seen in the modification of the A
segment, but efforts to optimize the B segment resulted
in the identification of the 2-trifluoromethylphenyl as
the optimal group. Further optimization of the C seg-
ment led to the discovery of the most potent compound
39 in both the primary and functional assays. Currently,
animal efficacy studies of 39 to validate the disease
model are in progress.
Acknowledgements
The authors would like to thank Faye Wu and Kathy
Tran for performing the clot-lysis assays, Marilyn Lam
and Jun Shen for pharmacokinetic studies, and Monica
Kochanny and Gary Phillips for manuscript preparation.
16. Ye, B.; Bauer, S.; Buckman, B. O.; Ghannam, A.; Grie-
del, B. D.; Khim, S.-K.; Lee, W.; Sacchi, K. L.; Shaw,
K. J.; Liang, A.; Wu, Q.; Zhao, Z. Bioorg. Med. Chem.
Lett. 2003, 13, 3361.
17. Welmaker, G. S.; Nelson, J. A.; Sabalski, J. E.; Sabb,
A. L.; Potoski, J. R.; Graziano, D.; Kagan, M.; Coupet,
J.; Dunlop, J.; Mazandarani, H.; Rosenzweig-Lipson, S.;
Sunkoff, S.; Zhang, Y. Bioorg. Med. Chem. Lett. 2000, 10,
1991.
18. The calculated LogP value was obtained through the cal-
culation of the compound via the software created by
Advanced Chemistry Development, Inc, Canada. The
cLog P value for 13 and 34 is 9.09Æ0.64 and 6.97Æ0.57,
respectively.
References and notes
1. (a) Collen, D.; Lijnen, H. R. Blood 1991, 78, 3114. (b)
Vassalli, J. D.; Sappino, A. P.; Belin, D. J. Clin. Invest.
1991, 88, 1067.
2. Declerk, P. J.; Juhan-Vaguo, I.; Felez, J.; Wiman, B. J.
Intern. Med. 1994, 236, 425.
3. (a) Loskutoff, D. J.; Sawdey, M.; Mimuro, J. Prog.