112
P. Blais et al. / Journal of Organometallic Chemistry 646 (2002) 107–112
tively. The [OP(NtBu)2(NHtBu)]2− ligands subtend
identical bond angles of 80.2° at Al via either N,O or
N,N chelation. The endocyclic bond angle ÚOLiN is
75.85(15)°.
[2] Y. Yang, J. Pinkas, M. Scha¨fer, H.W. Roesky, Angew. Chem.
Int. Ed. Engl. 37 (1998) 2650.
[3] I.D. Williams, Q. Gao, J. Chen, L.-Y. Ngai, Z. Lin, R. Xu,
Chem. Commun. (1996) 1781.
[4] W. Yan, J. Yu, Z. Shi, R. Xu, Inorg. Chem. 40 (2001) 379.
[5] M.G. Walawalkar, H.W. Roesky, R. Murugavel, Acc. Chem.
Res. 32 (1999) 117.
The 1H-NMR spectrum of 3 in C6D6 shows six
equally intense resonances in the region l 1.36–1.67
t
[6] M.R. Mason, J. Cluster Sci. 9 (1998) 1.
corresponding to the six inequivalent Bu groups at-
[7] Y. Yang, M.G. Walawalkar, J. Pinkas, H.W. Roesky, H.-G.
Schmidt, Angew. Chem. Int. Ed. Engl. 37 (1998) 96.
[8] Y. Yang, H.-G. Schmidt, M. Noltemeyer, J. Pinkas, H.W.
Roesky, J. Chem. Soc. Dalton. Trans. (1996) 3609.
[9] M.G. Walawalkar, R. Murugavel, A. Voigt, H.W. Roesky,
H.-G. Schmidt, J. Am. Chem. Soc. 119 (1997) 4656.
[10] M.G. Walawalkar, R. Murugavel, A. Voigt, H.W. Roesky,
H.-G. Schmidt, Organometallics 16 (1997) 516.
[11] K. Dimert, U. Englert, W. Kuchen, F. Sandt, Angew. Chem.
109 (1997) 251 (Angew. Chem. Int. Ed. Engl. 36 (1997) 241).
[12] M.R. Mason, M.S. Mashuta, J.F. Richardson, Angew. Chem.
109 (1997) 239 (Angew. Chem. Int. Ed. Engl. 36 (1997) 239).
[13] A. Keys, S. Bott, A.R. Barron, Chem. Commun. (1996) 2339.
[14] J.K. Brask, T. Chivers, M. Parvez, G. Schatte, Angew. Chem.
Int. Ed. Engl. 36 (1997) 1986.
tached to nitrogen atoms N(1)–N(6), suggesting that
the solid-state structure is maintained in C6D6 solution.
The solid-state 31P-NMR spectrum exhibits two reso-
nances at l 12.17 and −4.88 and the solid-state 27Al-
NMR spectrum revealed one signal at d −183.1.
4. Conclusions
These preliminary studies of imido analogs of alu-
minophosphate show that the AlPO analog Al[OP-
(NtBu)3] is not accessible from the reaction of OP[NHt-
Bu]3 and trimethylaluminum. Partial deprotonation oc-
x−
curs to give the anions [OP(NtBu)x(NHtBu)3−x
]
[15] P. Blais, J.K. Brask, T. Chivers, G. Schatte, Inorg. Chem. 40
(2001) 384.
[16] R.R. Holmes, J.A. Forstner, Inorg. Chem. 2 (1963) 380.
[17] SMART version 5.0: Software for the CD Detector System,
Bruker AXS, Inc., Madison, WI, 1998.
(x=1, 2) which engage in O,N or N,N chelation to the
aluminum center. The prevalence of four-membered
ring formation in 1–3, in contrast to the eight-mem-
bered rings observed for aluminophosphonates [29],
[18] SAINT version 5.0: Software for the CCD Detector System,
Bruker AXS, Inc., Madison, WI, 1998.
t
likely results from the steric influence of bulky Bu
groups. Future attempts to generate imido analogs of
AlPO materials will target derivatives with a lower N/O
ratio, e.g. Al[O3P(NR)], and smaller R groups.
[19] G.M. Sheldrick, SHELXS-97: Program for the Solution of Crys-
tal Structures, Universita¨t of Go¨ttingen, Go¨ttingen, Germany,
1997.
[20] G.M. Sheldrick, SHELXS-97-2: Program for the Solution of
Crystal Structures, Universita¨t of Go¨ttingen, Go¨ttingen, Ger-
many, 1997, Function minimized: ꢀw(ꢁFoꢁ−ꢁFcꢁ)2.
[21] E. Flu¨ck, H. Riffel, H. Richter, Phosphorus and Sulfur 4 (1985)
273.
5. Supplementary material
Crystallographic data for the structural analysis have
been deposited with the Cambridge Crystallographic
Data Centre, CCDC nos. 162602, 162603 and 162604
for compounds 1, 2 and 3, respectively. Copies of this
information may be obtained free of charge from The
Director, CCDC, 12 Union Road, Cambridge CB2
[22] A. Cowley, S.K. Mehrotra, H.W. Roesky, Inorg. Chem. 20
(1981) 712.
[23] (a) J.K. Brask, T. Chivers, G.P.A. Yap, Chem. Commun.
(1998) 2543;
(b) J.K. Brask, T. Chivers, G. Schatte, G.P.A. Yap,
Organometallics 19 (2000) 5683.
[24] (a) J.P. Corden, W. Errington, P. Moore, M.G.H. Wallbridge,
Chem. Commun. (1999) 323;
(b) J.P. Duxburg, A. Cowley, M. Thornton-Pett, L. Wantz,
J.N.D. Warner, R. Gretrex, D. Brown, T.P. Kee, Tetrahedron
Lett. 40 (1999) 4403;
Acknowledgements
(c) W. Liu, A. Hassan, S. Wang, Organometallics 16 (1997)
4257;
(d) J. Jewinski, J. Zachara, T. Kopen, Z. Ochal, Polyhedron 16
(1997) 1337;
(e) D.A. Atwood, M.S. Hill, J.A. Jegier, D. Rutherford,
Organometallics 16 (1997) 2659.
We thank Dr R. MacDonald (University of Alberta)
for the data collections for 1, 2 and 3 and the Natural
Sciences and Engineering Research Council of Canada
(NSERC) for financial support. Helpful discussions
about the structure of 1 with Dr M. Parvez (University
of Calgary) are gratefully acknowledged.
[25] J. Pinkas, H. Wessel, Y. Yang, M.L. Montero, M. Noltemeyer,
M. Fro¨ba, H.W. Roesky, Inorg. Chem. 37 (1998) 2450.
[26] M.S. Hill, D.A. Atwood, Main Group Chem. 2 (1998) 285.
[27] H. No¨th, A. Schlegel, J. Knizek, I. Krossing, W. Ponikwar, T.
Seifert, Chem. Eur. J. 4 (1998) 2191.
References
[28] J.K. Brask, T. Chivers, M. Parvez, G.P.A. Yap, Inorg. Chem.
38 (1999) 3594.
[29] M.R. Mason, R.M. Mathews, M.S. Mashuta, J.F. Richardson,
Inorg. Chem. 35 (1996) 5756.
[1] For a review see: A.K. Cheetham, G. Ferey, T. Louseau,
Angew. Chem. Int. Ed. Engl. 38 (1999) 3268.