E
Q. Shen et al.
Letter
Synlett
thermodynamically, leading to a lower overall barrier for
the skeletal rearrangement reaction. This explains why the
diol is not suitable for this reaction.
(2) (a) Ciochina, R.; Grossman, R. B. Chem. Rev. 2006, 106, 3963.
(b) Grenning, A. J.; Boyce, J. H.; Porco, J. A. Jr. J. Am. Chem. Soc.
2014, 136, 11799. (c) Gartner, M.; Müller, T.; Simon, J. C.;
Giannis, A.; Sleeman, J. P. ChemBioChem 2005, 6, 171. (d) van
Klink, J. W.; Larsen, L.; Perry, N. B.; Weavers, R. T.; Cook, G. M.;
Bremer, P. J.; MacKenzie, A. D.; Kirikae, T. Bioorg. Med. Chem.
2005, 13, 6651. (e) Liao, Y.; Yang, S.-Y.; Li, X.-N.; Yang, X.-W.; Xu,
G. Sci. China: Chem. 2016, 59, 1216.
The computed rearrangement barrier for the reaction
using propylamine [Scheme 5(B); green lines] is also very
high (37.3 kcal/mol via TS2_H), in agreement with the ex-
perimental result that the skeletal rearrangement product
was not detected (4f; Scheme 3). When comparing the
structures of two retro-aza-aldol transition states TS2 and
TS2_H, it is clear that hydrogen bonding between the OH
group attached to the aliphatic amine and the protonated
ketone in TS2 (1.66 Å, Scheme 5B) stabilizes the retro-aza-
aldol transition state significantly (28.9 versus 37.3
kcal/mol). This indicates that the hydroxy group of the ami-
no alcohol plays a key role in the retro-aza-aldol reaction
step and, consequently, the simple amine does not work in
the reaction.
In conclusion, the bicyclo[3.3.1]nonanetrione skeleton
of PPAPs can be transformed into a 4-hydroxytetrahydro-
quinolin-2(1H)-one through a unique rearrangement reac-
tion. The reaction mechanism was rationalized by DFT
calculations. The method provides a simple route for the
synthesis of derivatives of 4-hydroxytetrahydroquinolin-
2(1H)-one.
(3) (a) Surup, F.; Wagner, O.; von Frieling, J.; Schleicher, M.; Oess,
S.; Müller, P.; Grond, S. J. Org. Chem. 2007, 72, 5085. (b) Adam,
W.; Hartung, J.; Okamoto, H.; Marquardt, S.; Nau, W. M.; Pischel,
U.; Saha-Möller, C. R.; Špehar, K. J. Org. Chem. 2002, 67, 6041.
(c) Jessen, H. J.; Gademann, K. Nat. Prod. Rep. 2010, 27, 1168.
(d) Katsina, T.; Anagnostaki, E. E.; Mitsa, F.; Sarli, V.; Zografos, A.
L. RSC Adv. 2016, 6, 6978. (e) Anagnostaki, E. E.; Fotiadou, A. D.;
Demertzidou, V.; Zografos, A. L. Chem. Commun. 2014, 50, 6879.
(f) Halo, L. M.; Heneghan, M. N.; Yakasai, A. A.; Song, Z.;
Williams, K.; Bailey, A. M.; Cox, R. J.; Lazarus, C. M.; Simpson, T.
J. J. Am. Chem. Soc. 2008, 130, 17988. (g) Kumar, K. A.;
Kannaboina, P.; Das, P. Org. Biomol. Chem. 2017, 15, 5457.
(h) Vegi, S. R.; Boovanahalli, S. K.; Patro, B.; Mukkanti, K. Eur. J.
Med. Chem. 2011, 46, 1803. (i) Selness, S. R.; Devraj, R. V.;
Monahan, J. B.; Boehm, T. L.; Walker, J. K.; Devadas, B.; Durley, R.
C.; Kurumbail, R.; Shieh, H.; Xing, L.; Hepperle, M.; Rucker, P. V.;
Jerome, K. D.; Benson, A. G.; Marrufo, L. D.; Madsen, H. M.;
Hitchcock, J.; Owen, T. J.; Christie, L.; Promo, M. A.; Hickory, B.
S.; Alvira, E.; Naing, W.; Blevis-Bal, R. Bioorg. Med. Chem. Lett.
2009, 19, 5851. (j) Miyagawa, T.; Nagai, K.; Yamada, A.; Sugihara,
Y.; Fukuda, T.; Fukuda, T.; Uchida, R.; Tomoda, H.; Ōmura, S.;
Nagamitsu, T. Org. Lett. 2011, 13, 1158.
(4) (a) Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A.
T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88, 3888. (b) Smith, A. B. III.;
Atasoylu, O.; Beshore, D. C. Synlett 2009, 16, 2643. (c) Li, Q.;
Mitscher, L. A.; Shen, L. L. Med. Res. Rev. 2000, 20, 231.
(d) Simonetti, S. O.; Larghi, E. L.; Kaufman, T. S. Org. Biomol.
Chem. 2016, 14, 2625.
(5) (a) Kozikowski, A. P.; Campiani, G.; Sun, L.-Q.; Wang, S.; Saxena,
A.; Doctor, B. P. J. Am. Chem. Soc. 1996, 118, 11357. (b) Campiani,
G.; Kozikowski, A. P.; Wang, S.; Ming, L.; Nacci, V.; Saxena, A.;
Doctor, B. P. Bioorg. Med. Chem. Lett. 1998, 8, 1413. (c) Parreira,
R. L. T.; Abrahão, O. Jr.; Galembeck, S. E. Tetrahedron 2001, 57,
3243.
Funding Information
This work was supported by National Natural Science Foundation of
China (21702101, 21778029, and 21761142001) and the Fundamen-
tal Research Funds for the Central Universities in China. Y.L. thanks
the National Thousand Young Talents Program, Jiangsu Specially-
Appointed Professor Plan, and the NSF of Jiangsu Province
(BK20170631) in China for financial support. Y.C. acknowledges the
support from the Shenzhen Peacock Plan (No.1208040050847074).
N
oaitnN
a
lautSeacirnlcFeo
u
n
d
oaitnCohf
n
i2(a
1
7
0
2
1
0
1
N)oaitnNalautSeacirlnceF
o
u
n
d
oaitnCohf
n
i(a2
1
7
7
8
0
2
9
N)oaitnN
a
lautSeacirlnceF
o
u
n-
doaitn
of
C
h
n
i
a
2(
1
7
6
1
1
4
2
0
0
1)
Supporting Information
(6) (a) Mercedes, T.; Salvador, G.; Margarita, P. Curr. Org. Chem.
2005, 9, 1757. (b) Heravi, M. M.; Hamidi, H. J. Iran. Chem. Soc.
2013, 10, 265. (c) Razavi, N.; Akhlaghinia, B. New J. Chem. 2016,
40, 447.
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
(7) (a) Decker, H. Ber. Dtsch. Chem. Ges. 1892, 25, 443. (b) Smits, R.;
Turovska, B.; Belyakov, S.; Plotniece, A.; Duburs, G. Chem. Phys.
Lett. 2016, 649, 84.
(8) Baron, H.; Remfry, F. G. P.; Thorpe, J. F. J. Chem. Soc., Trans. 1904,
85, 1726.
(9) (a) Spessard, S. J.; Stoltz, B. M. Org. Lett. 2002, 4, 1943.
(b) Schönwälder, K.-H.; Kollat, P.; Stezowski, J. J.; Effenberger, F.
Chem. Ber. 1984, 117, 3280.
(10) Vidali, V. P.; Mitsopoulou, K. P.; Dakanali, M.; Demadis, K. D.;
Odysseos, A. D.; Christou, Y. A.; Couladouros, E. A. Org. Lett.
2013, 15, 5404.
(11) 4-Hydroxy-1-(3-hydroxypropyl)-7,7-dimethyl-6-(3-methyl-
but-2-en-1-yl)-5,6,7,8-tetrahydroquinolin-2(1H)-one (4)
A 250 mL round-bottomed flask was charged with bicyclic com-
pound 1 (1.3 g, 5.0 mmol, 1.0 equiv) in toluene (100 mL).
TsOH·H2O (20 mol%) was added, followed by 3-aminopropan-1-
ol (0.8 mL, 10.0 mmol, 2.0 equiv). The flask was fitted with a
References and Notes
(1) (a) Verotta, L. Phytochem. Rev. 2002, 1, 389. (b) Simpkins, N. S.
Chem. Commun. 2013, 49, 1042. (c) Horeischi, F.; Guttroff, C.;
Plietker, B. Chem. Commun. 2015, 51, 2259. (d) Bellavance, G.;
Barriault, L. Angew. Chem. Int. Ed. 2014, 53, 6701. (e) Uetake, Y.;
Uwamori, M.; Nakada, M. J. Org. Chem. 2015, 80, 1735. (f) Liao,
Y.; Liu, X.; Yang, J.; Lao, Y.-Z.; Yang, X.-W.; Li, X.-N.; Zhang, J.-J.;
Ding, Z.-j.; Xu, H.-X.; Xu, G. Org. Lett. 2015, 17, 1172.
(g) Sparling, B. A.; Moebius, D. C.; Shair, M. D. J. Am. Chem. Soc.
2013, 135, 644. (h) Ahmad, N. M.; Rodeschini, V.; Simpkins, N.
S.; Ward, S. E.; Blake, A. J. J. Org. Chem. 2007, 72, 4803. (i) Kong,
L.-M.; Long, X.-W.; Yang, X.-W.; Xia, F.; Khan, A.; Yan, H.; Deng,
J.; Li, X.; Xu, G. Tetrahedron Lett. 2017, 58, 2113.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–F