Journal of Materials Chemistry C
Paper
7 T. Peng, G. M. Li, K. Q. Ye, C. G. Wang, S. S. Zhao, Y. Liu,
Z. M. Hou and Y. Wang, J. Mater. Chem. C, 2013, 1, 2920.
8 F.-M. Hsu, C.-H. Chien, C.-F. Shu, C.-H. Lai, C.-C. Hsieh,
K.-W. Wang and P.-T. Chou, Adv. Funct. Mater., 2009, 19, 2834.
9 C. W. Lee and J. Y. Lee, Adv. Mater., 2013, 25, 5450.
10 A. Wada, T. Yasuda, Q. Zhang, Y. S. Yang, I. Takasu,
S. Enomoto and C. Adachi, J. Mater. Chem. C, 2013, 1, 2404.
11 C. Fan, L. P. Zhu, T. X. Liu, B. Jiang, D. G. Ma, J. G. Qin and
C. L. Yang, Angew. Chem., Int. Ed., 2014, 53, 2147.
12 J.-J. Huang, M.-K. Leung, T.-L. Chiu, Y.-T. Chuang, P.-T. Chou
and Y.-H. Hung, Org. Lett., 2014, 16, 5398.
through adopting the same host material. The simple material
system and the easily controlled fabrication process are of
significance and importance for reducing the cost and enhancing
the process stability in commercial mass production.
Conclusions
In summary, we have developed a novel tetraphenylsilane–
phenanthroimidazole hybrid compound, Si(PPI)2, which can
act as a host that realizes the highly efficient blue fluorescent
OLEDs as well as green and red phosphorescent OLEDs by
adopting a uniform and simple device configuration. The pure-
blue device with the CIE coordinates of (0.18, 0.17) exhibited
13 Q. Wang, C.-L. Ho, Y. B. Zhao, D. G. Ma, W.-Y. Wong and
L. X. Wang, Org. Electron., 2010, 11, 238.
14 T. Peng, K. Q. Ye, Y. Liu, L. Wang, Y. Wu and Y. Wang, Org.
Electron., 2011, 12, 1914.
the maximum EQE and PE values of 6.1% and 8.0 lm Wꢀ1
,
respectively, which are among the highest EL efficiencies ever
reported for pure-blue devices. Furthermore, the EL perfor-
mance of our green and red phosphorescent devices is also
comparable with that of the most efficient green and red
phosphorescent OLEDs reported to date. The high device
performance is due to the high thermal stability, wide bandgap,
efficient energy transfer and the balanced carrier-transport
abilities of Si(PPI)2. Our results indicate that Si(PPI)2 is a rare
and excellent common host, which may have abilities to simplify
the fabrication process and to reduce the material cost in com-
mercial mass production of high-performance multi-color OLEDs.
Moreover, Si(PPI)2 will also enable us to design the structurally
simple three-primary-color fluorescent/phosphorescent hybrid
white OLEDs, which are important and attractive for full-color
display and white lighting. Further application of Si(PPI)2 in white
OLEDs is ongoing in our lab.
15 T. Peng, G. F. Li, Y. Liu, Y. Wu, K. Q. Ye, D. D. Yao, Y. Yuan,
Z. M. Hou and Y. Wang, Org. Electron., 2011, 12, 1068.
16 Y. Zhang, S. L. Lai, Q. X. Tong, M. F. Lo, T. W. Ng, M. Y. Chan,
Z. C. Wen, J. He, K. S. Jeff, X. L. Tang, W. M. Liu, C. C. Ko,
P. F. Wang and C. S. Lee, Chem. Mater., 2012, 24, 61.
17 W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu,
B. Yang and Y. Ma, Adv. Funct. Mater., 2012, 22, 2797.
18 Z. Q. Gao, M. M. Luo, X. H. Sun, H. L. Tam, M. S. Wong,
B. X. Mi, P. F. Xia, K. W. Cheah and C. H. Chen, Adv. Mater.,
2009, 21, 688.
19 H. Fukagawa, N. Yokoyama, S. Irisa and S. Tokito, Adv.
Mater., 2010, 22, 4775.
20 Z. Jiang, T. Ye, C. Yang, D. Yang, M. Zhu, C. Zhong, J. Qin
and D. Ma, Chem. Mater., 2011, 23, 771.
21 K. S. Yook and J. Y. Lee, Adv. Mater., 2012, 24, 3169.
22 S. Y. Shao, J. Q. Ding, T. L. Ye, Z. Y. Xie, L. X. Wang,
X. B. Jing and F. S. Wang, Adv. Mater., 2011, 23, 3570.
23 Q. Wang, J. Q. Ding, D. G. Ma, Y. X. Cheng, L. X. Wang,
X. B. Jing and F. S. Wang, Adv. Funct. Mater., 2009, 19, 84.
24 H.-H. Chou and C.-H. Cheng, Adv. Mater., 2010, 22, 2468.
25 S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin and
D. Ma, Adv. Funct. Mater., 2011, 21, 1168.
Acknowledgements
Dr D. Liu and M. Du contributed equally to the work reported in
this article. This work was supported by the National Basic
Research Program of China (2013CB834805), the National
Natural Science Foundation of China (51173064, 91333201
and 51373062) and the Program for Chang Jiang Scholars and
Innovative Research Team in University (No. IRT13018).
26 Y.-L. Chang, S. Yin, Z. Wang, M. G. Helander, J. Qiu, L. Chai,
Z. Liu, G. D. Scholes and Z. Lu, Adv. Funct. Mater., 2013,
23, 705.
27 Y. Yuan, D. Li, X. Zhang, X. Zhao, Y. Liu, J. Zhang and
Y. Wang, New J. Chem., 2011, 35, 1534.
28 Y. Zhang, S. L. Lai, Q. X. Tong, M. F. Lo, T. W. Ng,
M. Y. Chan, Z. C. Wen, J. He, K. S. Jeff, X. L. Tang,
W. M. Liu, C. C. Ko, P. F. Wang and C. S. Lee, Chem. Mater.,
2012, 24, 61.
Notes and references
1 C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987,
51, 913.
29 W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu,
B. Yang and Y. Ma, Adv. Funct. Mater., 2012, 22, 2797.
30 H. Huang, Y. Wang, S. Zhuang, X. Yang, L. Wang and
C. Yang, J. Phys. Chem. C, 2012, 116, 19458.
2 M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151.
3 M. A. Baldo, S. Lamansky, P. E. Thompson and S. R. Forrest,
Appl. Phys. Lett., 1999, 75, 4.
31 K. Wang, S. P. Wang, J. B. Wei, S. Y. Chen, D. Liu, Y. Liu and
Y. Wang, J. Mater. Chem. C, 2014, 2, 6817.
32 K. Wang, S. P. Wang, J. B. Wei, Y. Miao, Y. Liu and Y. Wang,
Org. Electron., 2014, 15, 3211.
4 Y. Tao, Q. Wang, C. Yang, Q. Wang, Z. Zhang, T. Zou, J. Qin
and D. Ma, Angew. Chem., Int. Ed., 2008, 47, 8104.
5 S. Watanabe, N. Ide and J. Kido, Jpn. J. Appl. Phys., Part 1,
2007, 46, 1186.
33 X. F. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest
and M. E. Thompson, Chem. Mater., 2004, 16, 4743.
6 T. Peng, S. Huang, K. Q. Ye, Y. Wu, Y. Liu and Y. Wang, Org.
Electron., 2013, 14, 1649.
This journal is ©The Royal Society of Chemistry 2015
J. Mater. Chem. C