C O M M U N I C A T I O N S
Table 2. Reduction of â-Hydroxy-N-sulfinyl Imine 2c with Various
Reducing Agents
membered ring intermediate 6 analogous to the stereoselective
reduction of â-hydroxy ketones reported by Evans and Hoveyda.7
Isomerization from the E- to the Z-imine would presumably result
in the observed reversal in the stereoselectivity of the catecholborane
reduction.
In conclusion, the first application of metalloenamines derived
from N-sulfinyl imines is reported for the highly diastereoselective
addition to aldehydes. The reduction of the resulting â-hydroxy
sulfinyl imines 2 with catecholborane and LiBHEt3 provides syn-
and anti-1,3-amino alcohols, respectively, with very high diastereo-
meric ratios. The addition chemistry of metalloenamines derived
from N-sulfinyl R-substituted ketimines, aliphatic ketimines, and
aldimines is currently under investigation, as is the addition of
carbon-based nucleophiles to â-hydroxy imines 2.
reductant
NaBH4
NaCNBH3
catecholborane
LiBHEt3
solvent
THF
THF/AcOH
THF
THF
THF
major isomer
dra
yield (%)b
anti-4c
syn-4c
syn-4c
anti-4c
anti-4c
66:34
83:17
96:4
>99:1
>99:1
45
78
88
83
83
LiBH(s-Bu)3
a Diastereomeric ratios. b Isolated yields of diastereomerically pure
material.
Acknowledgment. We gratefully acknowledge the NSF for
financial support. T.P.T. also thanks Pharmacia for a graduate
research fellowship. The Center for New Directions in Organic
Synthesis is supported by Bristol-Myers Squibb as a Sponsoring
Member and Novartis as a Supporting Member. We thank Dr. Fred
Hollander and Dr. Allen Oliver of the UC Berkeley CHEXRAY
facility for carrying out the X-ray diffraction studies.
Table 3. Highly Diastereoselective Reduction of
â-Hydroxy-N-sulfinyl Imines 2
Supporting Information Available: Synthetic procedures, char-
acterization, and stereochemical determination of new compounds
(PDF). An X-ray crystallographic file in CIF format. This material is
R
reductant
major isomer
dra
yield (%)b
Et
catecholboranec
syn-4a
anti-4a
syn-4b
anti-4b
syn-4c
anti-4c
syn-4d
anti-4d
syn-4e
anti-4e
95:5
>99:1
96:4
>99:1
96:4
>99:1
96:4
>99:1
96:4
94
69
84
85
88
83
89
91
84
73
d
LiBHEt3
References
i-Bu
i-Pr
t-Bu
Ph
catecholboranec
(1) (a) Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. ReV. 1998, 27, 13. (b)
Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997, 119, 9913-
9914. (c) Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 12-13. (d)
Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121, 268-269. (e)
Cogan, D. A.; Liu, G.; Ellman, J. A. Tetrahedron 1999, 55, 8883-8904.
(f) Borg, G.; Cogan, D. A.; Ellman, J. A. Tetrahedron Lett. 1999, 40,
6709-6712. (g) Davis, F. A.; McCoull, W. J. Org. Chem. 1999, 64, 3396-
3397. (h) Davis, F. A.; Lee, S.; Zhang, H.; Fanelli, D. L. J. Org. Chem.
2000, 65, 8704-8708. (i) Lee, Y.; Silverman, R. B. Org. Lett. 2000, 2,
303-306. (j) Borg, G.; Chino, M.; Ellman, J. A. Tetrahedron Lett. 2001,
42, 1433-1436. (k) Prakash, G. K. S.; Mandal, M.; Olah, G. A. Angew.
Chem., Int. Ed. 2001, 40, 589-590. (l) Prakash, G. K. S.; Mandal, M.;
Olah, G. A. Org. Lett. 2001, 3, 2847-2850. (m) Lee, A.; Ellman, J. A.
Org. Lett. 2001, 3, 3707-3709. (n) Barrow, J. C.; Ngo, P. L.; Pellicore,
J. M.; Selnick, H. G.; Nantermet, P. G. Tetrahedron Lett. 2001, 42, 2051-
2054. (o) Tang, T. P.; Volkman, S. K.; Ellman, J. A. J. Org. Chem. 2001,
66, 8772-8778. (p) Pflum, D. A.; Krishnamurthy, D.; Han, Z.; Wald, S.
A.; Senanayake, C. H. Tetrahedron Lett. 2002, 43, 923-926.
d
LiBHEt3
catecholboranec
d
LiBHEt3
catecholboranec
d
LiBHEt3
catecholboranec
d
LiBHEt3
>99:1
a Diastereomeric ratios. b Isolated yields of diastereomerically pure
material. c Reaction was performed with 5 equiv of catecholborane in THF
at -10 °C for 20 h. d Reaction was performed with 2.5 equiv of LiBHEt3
in THF at -78 °C for 3 h.
reduction with catecholborane versus LiBHEt3 can be rationalized
by considering the geometry of the N-sulfinyl imine during the
reduction step (Figure 2). The E-geometry of â-hydroxy N-sulfinyl
(2) (a) Martin, D. Metalloenamines. In ComprehensiVe Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 2, pp 475-
502. (b) Whitesell, J. K.; Whitesell, M. A. Synthesis 1983, 95, 517-536.
(c) Bergbreiter, D. E.; Newcomb, M. Alkylation of Imine and Enamine
Salts. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press:
Orlando, FL, 1984; Vol. 2, pp 243-273.
(3) (a) Shibahara, S.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. J. Am.
Chem. Soc. 1972, 94, 4353-4354. (b) Kozikowski, A. P.; Chen, Y.-Y. J.
Org. Chem. 1981, 46, 5248-5250. (c) Wang, Y.-F.; Izawa, T.; Kobayashi,
S.; Ohno, M. J. Am. Chem. Soc. 1982, 104, 6465-6466. (d) Hashiguchi,
S.; Kawada, A.; Natsugari, H. J. Chem. Soc., Perkin Trans. 1 1991, 2435-
2444. (e) Knapp, S. Chem. ReV. 1995, 95, 1859-1876. (f) Sakai, R.;
Kamiya, H.; Murata, M.; Shimamoto, K. J. Am. Chem. Soc. 1997, 119,
4112-4116. (g) Carlier, P. R.; Lo, M. M.-C.; Lo, P. C.-K.; Richelson,
E.; Tatsumi, M.; Reynolds, I. J.; Sharma, T. A. Bioorg. Med. Chem. Lett.
1998, 8, 487-492. (h) Benedetti, F.; Norbedo, S. Chem. Commun. 2001,
203-204.
(4) Asymmetric synthesis of 1,3-amino alcohols: (a) Yamamoto, Y.; Komatsu,
T.; Maruyama, K. J. Chem. Soc., Chem. Commun. 1985, 814-815. (b)
Barluenga, J.; Fernandez-Mar´ı, F.; Viado, A. L.; Aguilar, E.; Olano, B.
J. Org. Chem. 1996, 61, 5659-5662. (c) Toujas, J.-L.; Toupet, L.; Vaultier,
M. Tetrahedron 2000, 56, 2665-2672. See also ref 3.
(5) The relative configuration of 4 was determined by NMR studies on cyclic
carbamates derived from syn- and anti-4c,e and X-ray crystallography of
syn-4e. See Supporting Information.
(6) Reduction of the N-sulfinyl imine derived from acetophenone with
LiBHEt3 proceeds with 96:4 dr and with the same relative stereochemistry
as observed for the reductions of 2 with LiBHEt3. In contrast, reduction
with catecholborane proceeds in very poor yield (<10%) and with poor
selectivity (<2:1).
Figure 2. Stereoselective reduction of N-sulfinyl imines 2.
imine 2 is based upon the X-ray crystal structure of 2e. The addition
of LiBHEt3 is unlikely to change the N-sulfinyl imine geometry.
In contrast, addition of catecholborane may provide the stable six-
(7) Evans, D. A.; Hoveyda, A. H. J. Org. Chem. 1990, 55, 5190-5192.
JA026292G
9
J. AM. CHEM. SOC. VOL. 124, NO. 23, 2002 6519