L.D. Henderson, W.E. Piers / Journal of Organometallic Chemistry 692 (2007) 4661–4668
4667
(c) C.L. Beswick, T.J. Marks, J. Am. Chem. Soc. 122 (2000) 10358;
(d) L. Li, C.L. Stern, T.J. Marks, Organometallics 19 (2000) 3332;
(e) C.L. Beswick, T.J. Marks, Organometallics 18 (1999) 2410;
(f) P.A. Deck, C.L. Beswick, T.J. Marks, J. Am. Chem. Soc. 120
(1998) 1772;
(g) L. Li, T.J. Marks, Organometallics 17 (1998) 3996;
(h) E.Y.-X. Chen, M.V. Metz, L. Li, C.L. Stern, T.J. Marks, J. Am.
Chem. Soc. 120 (1998) 6287;
(i) Y.-X. Chen, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 119 (1997)
2582;
(j) P.A. Deck, T.J. Marks, J. Am. Chem. Soc. 117 (1995) 6128;
(k) X. Yang, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 116 (1994)
10015;
the following concentrations [Zr] = 2.5, 5.0, 10.0 mM.
T = 212.0, 218.4, 229.8, 235.5, 241.9 K.
(b) [1-OMe] concentration: Anion symmetrization rate
constants, determined by 1D-DPFGSE NOE NMR spec-
troscopy, were obtained for the ion pair [2-OMe] in the
presence of excess trityl salt [1-OMe] at the following
concentrations: [Zr] = 5.0, 0.5, 1.0 and 2.0 mM excess
[1-OMe]; T = 212.0, 218.4, 229.8, 235.5, 241.9 K.
(c) C6D5Br concentration: Anion symmetrization rate
constants, determined by 1D-DPFGSE NOE NMR spec-
troscopy, were obtained for the ion pair [2-OMe] in the
presence of C6D5Br in the following concentrations:
[Zr] = 5.0, 0.5, 1.0, 2.0 mM C6D5Br; T = 212.0, 218.4,
229.8, 235.5, 241.9 K.
(l) X. Yang, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 113 (1991)
3623.
[4] (a) G. Erker, Dalton Trans. (2005) 1883;
(b) W.E. Piers, Adv. Organomet. Chem. 52 (2005) 1.
[5] (a) K. Bryliakov, D.E. Babushkin, E.P. Talsi, A.Z. Voskoboynikov,
H. Gritzo, L. Schroeder, H.-R.H. Damrau, U. Weiser, F. Schaper,
H.-H. Brintzinger, Organometallics 24 (2005) 894;
(b) F. Schaper, F. Geyer, H.-H. Brintzinger, Organometallics 21
(2002) 473;
(c) S. Beck, S. Lieber, F. Schaper, A. Geyer, H.-H. Brintzinger, J.
Am. Chem. Soc. 123 (2001) 1483.
[6] (a) F. Song, S.J. Lancaster, R.D. Cannon, M. Schormann, S.M.
Humphrey, C. Zuccaccia, A. Macchioni, M. Bochmann, Organomet-
allics 24 (2005) 1315;
3.6.1. [Cp020ZrMe]þ[B(C6F 5)4]ꢁ ([2-B(C6F5)4])
Addition of the metallocene solution to the activator
solution was done at 195 K. The solution was slowly
1
warmed in the NMR probe. H NMR (90% toluene-d8/
10% C6D5Br, 230 K): d 5.80 (m, 2H, Cp–H), 5.73 (m,
2H, Cp–H), 5.52 (m, 2H, Cp–H), 1.95 (s, 6H, Cp–Me),
1.49 (s, 6H, Cp–Me), 0.09 (s, 3H, Zr–Me). Note: Com-
pound oils out over about 1 hour below 273 K and is not
stable above room temperature. Tc was determined to be
279.92 K, and dv was taken as an average of all other deter-
minations of dv, ꢄ186 Hz.
(b) F. Song, R.D. Cannon, M. Bochmann, J. Am. Chem. Soc. 125
(2003) 7641;
(c) S.J. Lancaster, A. Rodriguez, A. Lara-Sanchez, M.D. Hannant,
D.A. Walker, D.L. Hughes, M. Bochmann, Organometallics 21
(2002) 451;
(d) A. Rodriguez-Delgado, M.D. Hannant, S.J. Lancaster, M.
Bochmann, Macromol. Chem. Phys. 204 (2004) 334.
[7] (a) Z. Liu, E. Somsook, C.B. White, K.A. Rosaaen, C.R. Landis, J.
Am. Chem. Soc. 123 (2001) 11193;
Acknowledgements
Funding for this work came from the Natural Sciences
and Engineering Research Council of Canada in the form
of a Discovery Grant (to W.E.P.) and Postgraduate Fel-
lowship support (to L.D.H.).
(b) C.R. Landis, K.A. Rosaaen, J. Uddin, J. Am. Chem. Soc. 124
(2002) 12062;
(c) C.R. Landis, K.A. Rosaaen, D.R. Sillars, J. Am. Chem. Soc. 125
(2003) 1710;
(d) D.R. Sillars, C.R. Landis, J. Am. Chem. Soc. 125 (2003) 9894.
[8] (a) A. Al-Humydi, J.C. Garrison, W.J. Youngs, S. Collins, Organo-
metallics 24 (2005) 193;
Appendix A. Supplementary material
(b) M. Mohammed, M. Nele, A. Al-Humydi, S. Xin, R.A. Stapleton,
S. Collins, J. Am. Chem. Soc. 125 (2003) 7930.
[9] (a) V. Busico, V. Van Axel Castelli, P. Aprea, R. Cipullo, A. Segre,
G. Talarico, M. Vacatello, J. Am. Chem. Soc. 125 (2003) 5451;
(b) V. Busico, R. Cipullo, W.P. Kretschmer, G. Talarico, M.
Vacatello, V. Van Axel Castelli, Angew. Chem., Int. Ed. 41 (2002)
505.
[10] (a) J.C. Yoder, J.E. Bercaw, J. Am. Chem. Soc. 124 (2002) 2548;
(b) G.M. Wilmes, J.L. Polse, R.M. Waymouth, Macromolecules 35
(2002) 6766.
Examples of each solution dynamic method, a listing of
all rate data collected, and experimental for compꢁarison
studies to the ion pairs ½Cp00ZrMeꢀþ½MeBðC6F5Þ ꢀ and
2
3
[Me2SiCp2ZrMe]+[MeB(C6F5)3]ꢁ. Supplementary data
associated with this article can be found, in the online ver-
References
[11] (a) A. Correa, L. Cavallo, J. Am. Chem. Soc. 128 (2006) 10952;
(b) R. Fusco, L. Longo, F. Masi, F. Garbassi, Macromolecules 30
(1997) 7673;
[1] (a) R.F. Jordan, Adv. Organomet. Chem. 32 (1991) 325;
(b) H.-H. Brintzinger, D. Fischer, R. Mulhaupt, B. Rieger, R.M.
¨
(c) I.E. Nifant’ev, L.Y. Ustynyuk, D.N. Laikov, Organometallics 20
(2001) 5375;
(d) G. Lanza, I.L. Fragala’, T.J. Marks, Organometallics 21 (2002)
5594;
(e) G. Lanza, I.L. Fragala’, T.J. Marks, Organometallics 20 (2001)
4006;
(f) K. Vanka, T. Ziegler, Organometallics 20 (2001) 905;
(g) G. Lanza, I.L. Fragala’, T.J. Marks, J. Am. Chem. Soc. 120
(1998) 8257;
Waymouth, Angew. Chem., Int. Ed. Engl. 34 (1995) 1143;
(c) L. Resconi, L. Cavallo, A. Fait, F. Peimontesi, Chem. Rev. 100
(2000) 1253;
(d) G.W. Coates, Chem. Rev. 100 (2000) 1223;
(e) M. Bochmann, J. Chem. Soc., Dalton Trans. (1996) 255.
[2] (a) E.Y.-X. Chen, T.J. Marks, Chem. Rev. 100 (2000) 1391;
(b) A. Macchioni, Chem. Rev. 105 (2005) 2039;
(c) M. Bochmann, J. Organomet. Chem. 689 (2004) 3982.
[3] (a) M.V. Metz, D.J. Schwartz, C.L. Stern, T.J. Marks, Organomet-
allics 21 (2002) 4159;
(h) Z. Xu, K. Vanka, T. Firman, A. Michalak, E. Zurek, C. Zhu, T.
Ziegler, Organometallics 21 (2002) 2444;
(i) Z. Xu, K. Vanka, T. Ziegler, Organometallics 23 (2004) 104;
(b) M.-C. Chen, J.A. Roberts, T.J. Marks, J. Am. Chem. Soc. 126
(2004) 4605;