COMMUNICATIONS
8.28 (s, 1H, Ade-H8), 8.36, 8.37 (s, 1H, Ade-H2), 8.37, 8.46 (brs, 2H, Ade-
N6H2), 11.30 (s, 1H, Thy-N3H); MS: m/z: 562.0 [Pd(1)Cl] ; elemental
analysis (%) calcd for 2 ¥ 3H2O: C 28.99, H 4.12, N 13.92; found: C 28.13, H
3.97, N 13.14. A small quantity of crystals of 2 suitable for single-crystal
X-ray diffraction studies were grown by slow cooling of a hot aqueous
solution.[9]
unique (Rint 0.0451, q ꢀ 25.08); R 0.0829 (F values, F 2 > 2s), Rw
0.1771 (F 2 values, all data), GOF 1.312for 350 parameters, max./min.
residual electron density 2.58/ À 1.47 eäÀ3. b) Crystal data for 3:
C17H32ClF3N7O6.5PtS2Si0.5, Mr 804.20, monoclinic, space group I2/a,
a 24.4619(10), b 7.9190(3), c 29.1288(10) ä, b 98.073(2)8, V
5586.7(4) ä3, Z 8, 1calcd 1.912gcm À3, synchrotron radiation at Dare-
bury Laboratory station 9.8, l 0.6942ä, m 5.36 mmÀ1, T 160 K.
18024 measured reflections were corrected for absorption; 6866 were
unique (Rint 0.0360, q ꢀ 27.5 8); R 0.0388 (F values, F 2 > 2s), Rw
0.1053 (F 2 values, all data), GOF 1.185 for 350 parameters, max./min.
residual electron density 2.49/ À 1.19 eä3. c) The anion in both crystal
structures wass identified as SiF62À, generated by etching of the glass by
the aqueous BF4À ions. Detailed evidence is available from the authors.
d) Programs: standard Bruker AXS control and integration software
and SHELXTL. CCDC-170471 (2) and CCDC-170472( 3) contain the
supplementary crystallographic data for this paper. These data can be
(or from the Cambridge Crystallographic Data Centre, 12Union Road,
Cambridge CB21EZ, UK; fax: (44)1223-336-033; or deposit@ccdc.
cam.ac.uk).
3: Same procedure as for Pd analogue 2, except that K2[PtCl4] (0.074 g,
0.182mmol) in aqueous solution was used as starting material, and to this
was added dropwise a hot ethanolic solution of 1 (0.076 g, 0.182mmol), and
the mixture refluxed overnight. The cooled solution was taken to dryness
under reduced pressure, and the resultant solid residue dissolved in hot
water (50 mL). The mixture was filtered to remove undissolved solids and
concentrated to a minimum volume in vacuo. The addition of a saturated
aqueous solution of NaBF4 precipitated 3 as a white solid, which was
washed with water, ethanol, and diethyl ether and pump dried. Yield
0.093 g, 69.3%. 1H NMR ([D6]DMSO, TMS): d 1.78, 1.81 (s, 3H, Thy-
CH3), 2.13, 2.23 (m, 2H, H17), 3.04 (m, 1H, H16), 3.10 (m, 1H, H16), 3.22
(d, 1H, H13'), 3.36 (m, 1H, H14), 3.39 (m, 1H, H14'), 3.62(d, 1H, H13),
3.73 (m, 1H, H11'), 3.82(m, 1H, H11), 4.74 (m, 2H, H18), 4.81, 5.07 (d, 1H,
H10'), 5.13 (m, 1H, H10), 7.51, 7.53 (s, 1H, Thy-H6), 8.28, 8.29 (s, 1H, Ade-
H8), 8.41, 8.43 (s, 1H, Ade-H2), 8.47, 8.57 (brs, 2H, Ade-N6H2), 11.29 (s,
1H, Thy-N3H); MS: m/z: 652.0 [Pt(1)Cl] ; elemental analysis (%) calcd
for 3 ¥ 2 H2O: C 26.35, H 3.51, N 12.65; found: C 27.07, H 3.98, N 12.71.
Crystallization by slow cooling of a hot aqueous solution of 3 yielded a few
single crystals, some of which were suitable for diffraction studies.[9]
Received: September 17, 2001
Revised: December 27, 2001 [Z17917]
Dearomatizing Disrotatory Electrocyclic Ring
Closure of Lithiated N-Benzoyloxazolidines**
Jonathan Clayden,* Savroop Purewal,
Madeleine Helliwell, and Simon J. Mantell
[1] a) G. M. Whitesides, E. E. Simanek, J. P. Mathias, C. T. Seto, D. N.
Chin, M. Mammen, D. M. Gordon, Acc. Chem. Res. 1995, 28, 37 44;
b) J. L. Sessler, B. Wang, A. Harriman, J. Am. Chem. Soc. 1993, 115,
10418 10419; c) A. D. Burrows, C.-W. Chan, M. M. Chowdhry, J. E.
McGrady, D. M. P. Mingos, Chem. Soc. Rev. 1995, 24, 351 358.
[2] a) I. Dieter-Wurm, M. Sabat, B. Lippert, J. Am. Chem. Soc. 1992, 114,
357 359; b) A. Schreiber, M. S. Luth, A. Erxleben, E. C. Fusch, B.
Lippert, J. Am. Chem. Soc. 1996, 118, 4124 4132; c) J. A. R. Navarro,
B. Lippert, Coord. Chem. Rev. 1999, 185, 653 667, and references
therein.
Aromatic amides–both naphthamides and benzamides–
can be dearomatized in a cyclization reaction triggered by a
benzylic lithiation a to the amide nitrogen.[1] The reaction has
been optimized for the synthesis of functionalized cyclo-
hexadienes 4 and cyclohexenones from amides 1, and both the
benzamide and naphthamide versions of the reaction
(Scheme 1) have been employed in the synthesis of important
members of the kainoid family of cyclic amino acids.[2]
Superficially, the mechanism of this cyclization appears to
be an intramolecular conjugate addition reaction[3] of the
benzylic anionic center into the electron-deficient ortho
position of the aromatic ring, with the product stereochem-
istry arising from the preference of the phenyl group for the
exo face of the forming bicyclic ring system. However, under
this interpretation, the cyclization of the lithiated benzamide 2
has at least some (Baldwin-disfavored) 5-endo-trig charac-
ter,[4] and the cyclization of a 2-naphthamide 2 (R1, R2
benzo) rather more.
[3] Nucleic Acids in Chemistry and Biology (Eds.: G. M. Blackburn, J. M.
Gait), IRL Press, Oxford, 1990.
[4] a) C. Price, M. R. J. Elsegood, W. Clegg, A. Houlton, Chem. Commun.
1995, 2285 2286; b) C. Price, M. R. J. Elsegood, W. Clegg, N. H. Rees,
A. Houlton, Angew. Chem. 1997, 109, 1823 1825; Angew. Chem. Int.
Ed. Engl. 1997, 36, 1762 1764; c) M. A. Shipman, C. Price, A. E.
Gibson, M. R. J. Elsegood, W. Clegg, A. Houlton, Chem. Eur. J. 2000, 6,
4371 4378; d) M. A. Shipman, C. Price, M. R. J. Elsegood, W. Clegg,
A. Houlton, Angew. Chem. 2000, 112, 2450 2452; Angew. Chem. Int.
Ed. 2000, 39, 2360 2362; e) C. Price, M. A. Shipman, S. L. Gummer-
son, A. Houlton, W. Clegg, M. R. J. Elsegood, J. Chem. Soc. Dalton
Trans. 2001, 353 354; f) C. Price, M. A. Shipman, N. H. Rees, M. R. J.
Elsegood, A. J. Edwards, W. Clegg, A. Houlton, Chem. Eur. J. 2001, 7,
1194 1200.
[5] Synthetic nucleobase strands linked to flexible and rigid organic
framework have been reported previously: a) D. T. Browne, J. Eisinger,
N. J. Leonard, J. Am. Chem. Soc. 1968, 90, 7302 7312; b) J. L. Sessler,
R. Wang, J. Am. Chem. Soc. 1996, 118, 9808 9809; c) J. L. Sessler, R.
Wang, J. Org. Chem. 1998, 63, 4079 4091.
An attractive alternative rationalization, illustrated in the
box in Scheme 1, is that the cyclization is pericyclic and
[6] AT bases have been attached to diazacrowns that can bind metal ions:
a) O. F. Schall, G. W. Gokel, J. Am. Chem. Soc. 1994, 116, 6089 6100;
b) O. F. Schall, G. W. Gokel, J. Org. Chem. 1996, 61, 1449 1458.
[7] a) C. Meiser, B. Song, E. Freisinger, M. Peilert, H. Sigel, B. Lippert,
Chem. Eur. J. 1997, 3, 388 398; b) Y. Lui, C. Pacifico, G. Natile, E.
Sletten, Angew. Chem. 2001, 113, 1266 1268; Angew. Chem. Int. Ed.
2001, 40, 1226 1228.
[*] Prof. J. Clayden, S. Purewal, Dr. M. Helliwell
Department of Chemistry
University of Manchester
Oxford Rd, Manchester M13 9PL (UK)
Fax : (44)161-275-4939
Dr. S. J. Mantell
Pfizer Central Research
Sandwich, Kent CT13 9NJ (UK)
[8] a) Crystal data for 2: C17H32ClF3N7O6.5PdS2Si0.5, Mr 715.51, mono-
clinic, space group I2/a, a 24.3737(16), b 7.9006(5), c
29.2031(19) ä, b 97.894(2)8, V 5570.3(6) ä3, Z 8, 1calcd
1.706 gcmÀ3, MoKa radiation, l 0.71073 ä, m 1.00 mmÀ1, T 160 K.
[**] We are grateful to Pfizer and to the EPSRC for a CASE studentship
(to S.P.).
18467 measured reflections were corrected for absorption; 4903 were
Angew. Chem. Int. Ed. 2002, 41, No. 6
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4106-1049 $ 17.50+.50/0
1049