3504
D. Ewing et al. / Tetrahedron Letters 43 (2002) 3503–3505
O
NH2
O
N
O
R
R
O
R
O
NH
N
NH
NH
O
O
N
O
N
O
O
N
O
iii
TrO
ii
i
TrO
HO
TrO
R=H
HO
OH
HO
OH
5 : R = H
7 : R = H
9 : R = H
11
6 : R = CH3
8 : R = CH3
10 : R = CH3
v
iv
iv
R = CH3
O
O
NH2
R
O
NH
NH
N
iv
d4T
O
N
O
N
O
O
N
O
HO
TrO
HO
1
12 : R = H
15
14
13 : R = CH3
Scheme 1. (i) TrCl, pyr.; (ii) (a) NaIO4, EtOH/H2O, (b) Ph3PCH3Br, t-BuOK, toluene; (iii) (a) 1,2,4-triazole, POCl3, CH3CN,
Et3N, (b) aq. 30% NH3 in 1,4-dioxane; (iv) AcOH 80%; (v) Grubbs reagent, CH2Cl2.
periodate in ethanol/water to give the corresponding
dialdehydes. These compounds were not stable and
hence, after isolation, they were subjected directly to a
double Wittig olefination with methyltriphenylphospho-
nium bromide to afford the novel bis alkenes 1-{1-[1-
(trityloxymethyl)prop-2-enyloxy]prop-2-enyl}uracil (9)
1263–1266; (b) Delbederi, Z.; Fossey, C.; Fontaine, G.;
Benzaria, S.; Gavriliu, D.; Ciurea, A.; Lelong, B.;
Laduree, D.; Aubertin, A. M.; Kirn, A. Nucleosides
Nucleotides 2000, 19, 1441–1461; (c) Chiacchio, U.;
Rescifina, A.; Iannazzo, D.; Romeo, G. J. Org. Chem.
1999, 64, 28–36.
and
1-{1-[1-(trityloxymethyl)prop-2-enyloxy]prop-2-
2. Sztaricskai, F.; Csorvasi, A.; Horvath, A.; Batta, G.;
Dinya, Z. J. Carbohydr. Chem. 2000, 19, 1223–1233.
3. (a) Teran, C.; Moa, M. J. G.; Mosquera, R.; Santana, L.
Nucleosides Nucleotides 2001, 20, 999–1002; (b) Song, G.
Y.; Paul, V.; Choo, H.; Morrey, J.; Sidwell, R. W.;
Schinazi, R. F.; Chu, C. K. J. Med. Chem. 2001, 44,
3985–3993.
4. (a) Wang, J.; Herdewijn, P. J. Org. Chem. 1999, 64,
7820–7827; (b) Barral, K.; Halfon, P.; Pepe, G.; Camplo,
M. Tetrahedron Lett. 2002, 43, 81–84.
enyl}thymine (10). It was found that the yield in this
olefination step was strongly dependent on the base
used, t-BuOK in toluene being much more effective
(50% yield) that BuLi in tetrahydofuran (25% yield).
Standard nucleoside methodology was used to convert
the uracil compound 9 to the cytosine analogue 11 in
89% yield.10 The three bis alkene nucleoside analogues
were easily deprotected in very high yield (>88%) to
give compounds 12, 1311 and 14, respectively. These
interesting compounds are clearly capable of further
elaboration by epoxidation or dihydroxylation and may
lead to novel polyhydroxy nucleoside analogues with
therapeutic potential.
5. Ewing, D. F.; Fahmi, N.-E.; Len, C.; Mackenzie, G.;
Pranzo, A. J. Chem. Soc., Perkin Trans. 1 2000, 3561–
3565.
6. (a) Pedersen, D. S.; Boesen, T.; Eldrup, A. B.; Kiaer, B.;
Madsen, C.; Hedriksen, U.; Dahl, O. J. Chem. Soc.,
Perkin Trans. 1 2001, 1656–1661; (b) Redwane, N.;
Lazrek, H. B.; Barascut, J. L.; Imbach, J. L.; Balzarini,
J.; Witvrouw, M.; De Clercq, E. Nucleosides Nucleotides
2001, 20, 1439–1447; (c) Du, J. F.; Wang, G. Y.
Nucleosides Nucleotides 2000, 19, 867–879; (d) Hirota, K.;
Monguchi, Y.; Sajiki, H.; Yatome, C.; Hiraoka, A.;
Kitade, Y. Nucleosides Nucleotides 1998, 17, 1333–1345.
7. Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Chal-
land, R. S.; Earl, R. E.; Guedj, R. Tetrahedron 1994, 50,
10611–10620.
The discovery of convenient catalysts has greatly
increased interest in ring closure metathesis.12 Treat-
ment of the 5-methyluracil derivative 10 with Grubbs
reagent in dichloromethane resulted in clean ring clo-
sure to form the protected d4T species 15. To our
knowledge this is the first example of the formation of
the 2,5-dihydrofuran ring by metathesis. Compound 15
had identical physical data to that reported by
Cosford13 and was easily deprotected to afford d4T (1).
8. Ono, M.; Nishimura, K.; Tsubouchi, H.; Nagaoka, Y.;
Tomioka, K. J. Org. Chem. 2001, 66, 8199–8203 and
references cited therein.
References
9. Ewing, D. F.; Glac¸on, V.; Mackenzie, G.; Len, C. Tetra-
hedron Lett. 2001, 43, 989–991.
1. Recent work includes: (a) Guo, Z.; Sanghvi, Y. S.; Bram-
mer, L. E.; Hudlicky, T. Nucleosides Nucleotides 2001, 20,