Brief Articles
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 15 3323
tion assay. This material is available free of charge via the
Internet at http://pubs.acs.org.
carbons are identical to those of Amprenavir (S, S, R),
was inactive. The four diastereoisomers (10a 1, 10a 2,
10b1, 10b2) were then tested as recombinant HIV
protease inhibitors according to a classical procedure.26
IC50 values are given in Table 1. It can be seen that the
four diastereoisomeric resolved Amprenavir bioisosteres
(10a 1, 10a 2, 10b1, 10b2) were only weak inhibitors of
recombinant HIV protease (IC50 values were 1.4, 11.6,
12.5, and 16.7 µM, respectively). One explanation for
the lack of HIV-protease inhibitory properties of these
thiophenoxy bioisosteres could be their high sensitivity
to hydrolysis. We have seen through the recombinant
anti-HIV-1-protease inhibition studies that the new bio-
isosteres are not protease substrates. The HPLC profile
showed that the peak corresponding to the bioisostere
remained unchanged. Since the bioisosteres were not
degraded by the recombinant HIV-1 protease, we have
also studied their stabilities in normal human serum.
The half-lives (t1/2) of some representative compounds
were determined at 37 °C by the HPLC method. The
half-life value found for compound 10 was 10 min, while
Amprenavir was recovered unchanged after 1440 min.
These results were inconsistent with molecular mod-
eling studies (data not shown) that supported the
hypothesis that the replacement of the methylene group
in the phenylalanine moiety of Amprenavir did not
affect drastically the binding energy of the resulting
analogue within the active site of the HIV-1 protease.
Introduction of a thiophenoxy moiety abolished both
protease inhibition activities and viral cytopathogenicity
protection in HIV-infected MT4 cells, indicating that the
presence of a sulfur atom disturbed the capabilities of
the thiophenoxy drug to form a complex within the HIV-
protease active site.
Refer en ces
(1) Pearl, L. H.; Taylor, W. R. A Structural Model for the Retroviral
Proteases. Nature 1987, 329, 351-354.
(2) Power, M. D.; Marx, P. A.; Bryant, M. L.; Gardner, M. B.; Barr,
P. J .; Luciw, P. A. Nucleotide Sequence of SRV-1, a Type D
Simian Acquired Immune Deficiency Syndrome. Science 1986,
231, 1567-1572.
(3) Ratner, L.; Haseltine, W.; Patarca, R.; Livak, K. J .; Starcich,
B.; J osephs, S. F.; Doran, E. R.; Rafalski, J . A.; Whitehorn, E.
A.; Baumeister, K.; Ivanoif, L.; Petteway, S. R., J r.; Pearson, M.
L.; Lautenberger, J . A.; Papas, T. S.; Ghrayeb, J .; Chang, N. T.;
Gallo, R. C.; Wong-Staal, F. Complete Nucleotide Sequence of
the AIDS Virus, HTLV III. Nature 1985, 313, 277-284.
(4) Wain-Hobson, S.; Sonigo, P.; Danos, O.; Cole, S.; Alizon, M.
Nucleoside Sequence of the AidsVirus, LAV. Cell 1985, 40, 9-10.
(5) Muesing, M. A.; Smith, D. H.; Cabradilla, C. D.; Benton, C. V.;
Lasky, L. A.; Capon, D. J . Nucleic Acid Structure and Expression
of the Human AIDS/Lymphadonopathy Retrovirus. Nature 1985,
313, 450-458.
(6) Kohl, N. E.; Emini, E. A.; Schleif, W. A.; Davis, L. J .; Heimbach,
J . C.; Dixon, R. A. F.; Scolnick, E. M.; Sigal, I. S. Active HIV-1
Protease Is Required for Viral Infectivity. Proc. Natl. Acad. Sci.
U.S.A. 1988, 85, 4686-4690.
(7) Kramer, R. A.; Ganguly, K.; Reddy, E. P.; Shaber, M. D.; Skalka,
A. M.; Wongstaal, F. HTLV III GAG Protein Is Processed in
Yeast-Cells by the Virus Pol-Protease. Science 1986, 231, 1580-
1584.
(8) Dorsey, B. D.; McDonough, C.; McDaniel, S. L.; Levin, R. B.;
Newton, C. L.; Hoffman, J . M.; Darke, P. L.; Zugay-Murphy, J .
A.; Emini, E. A.; Schleif, W. A.; Olsen, D. B.; Stahlhut, M. W.;
Rutkowski, C. A.; Kuo, L. C.; Lin, J . H.; Chen, I. W.; Michelson,
S. R.; Holloway, M. K.; Huff, J . R.; Vacca, J . P. Identification of
MK-944a: A Second Clinical Candidate from the Hydroxy-
laminepentanamide Isostere Series of HIV Protease Inhibitors.
J . Med. Chem. 2000, 43, 3386-3399.
(9) Kempf, D. J .; Sham, H. L. HIV Protease Inhibitors. Curr. Pharm.
Des. 1996, 2, 225-246.
(10) Swanstrom, R.; Erona, J . Human Immunodeficiency Virus
Type-1 Protease Inhibitors: Therapeutic Successes and Failures,
Suppression and Resistance. Pharmacol. Ther. 2000, 86, 145-
170.
(11) Murphy, R. L.; Gulick, R. M.; DeGruttola, V.; D’Aquila, R. T.;
Eron, J . J .; Sommadossi, J . P.; Currier, J . S.; Smeaton, L.; Frank,
I.; Caliendo, A. M.; Gerber, J . G.; Tung, R.; Kuritzkes, D. R.
Treatment with Amprenavir Alone or Amprenavir with Zidovu-
dine and Lamivudine in Adults with Human Immunodeficiency
Virus Infection. J . Infect. Dis. 1999, 109, 808-816.
(12) Molla, A.; Granneman, G. R.; Sun, D.; Kempf, E. Recent
Development in HIV Protease Therapy. Antiviral Res. 1998, 39,
1-23.
(13) Shirasaka, T.; Yarchoan, R.; O’Brien, M. C.; Husson, R. N.;
Anderson, B. D.; Kojima, E.; Shimada, T.; Broder, S.; Mitsuya,
H. Changes in Drug Sensitivity of Human Immunodeficiency
Virus Type 1 during Therapy with Azidothymidine, Dideoxycy-
tidine, and Dideoxyinosine: An In Vitro Comparative Study.
Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 562-566.
(14) Arts, E. J .; Wainberg, M. A. Mechanisms of Nucleoside Analog,
Antiviral Activity and Resistance during HIV Reverse Tran-
scription. Antimicrob. Agents Chemother. 1996, 40, 527-540.
(15) De Clercq, E. Antiviral Therapy for HIV Infections. Clin.
Microbiol. Rev. 1995, 8, 200-239.
(16) Patani, G. A.; LaVoie, E. J . Bioisosterism: A Rational Appoach
in Drug Design. Chem. Rev. 1996, 96, 3147-3106.
Con clu sion
The simple replacement of the methylene group in the
benzyl moiety of Amprenavir by a sulfur atom abolished
drastically antiviral activity on HIV replication in
infected MT4 cells, as well as inhibitory properties on
recombinant HIV-1 protease. Our finding is that the
hydrophobic binding of the aromatic moiety of the Phe
residue and its orientation within the protease binding
site are critical to enzyme inhibition. In addition to the
drastically observed decrease of Amprenavir bioisostere
stability in human serum, the presence of the sulfur
atom induces a significant entropic disadvantage to the
resulting bioisostere for coincident binding of the thiophe-
noxy moiety in the protease active site.
(17) Romeo, S.; Rich, D. H. Diastereoselective Epoxidation of Dipep-
tides Olefins. Tetrahedron Lett. 1993, 34, 7187-7190.
(18) Freskos, J .; Bertenshaw, D.; Getman, D.; Heintz, R.; Mischke,
B.; Blystone, L.; Bryant, M.; Funckes-Shippy, C.; Houseman, K.;
Kishore, N.; Kocan, G.; Mehta, P. (Hydroxyethyl) Sulfonamide
HIV-1 Protease Inhibitors: Identification of the 2-Methylbenzoyl
Moiety at P-2. Bioorg. Med. Chem. Lett. 1996, 6, 445-450.
(19) Mancuso, A. J .; Swern, D. Activated Dimethyl Sulfoxyde: Useful
Reagents for Synthesis. Synthesis 1981, 165-185.
(20) Ghosh, A. K.; Duong, T. T.; McKee, S. P.; Thompson, W. J . N,N′-
Disuccinimidyl Carbonate: A Useful Reagent for Alkoxycarbo-
nylation of Amines. Tetrahedron Lett. 1992, 33, 2781-2784.
(21) Semmelhack, M.; Chou, C.; Cortes, D. Nitroxyl-Mediated Elec-
tooxidation of Alcohols to Aldehydes and Ketones. J . Am. Chem.
Soc. 1983, 105, 4492-4494.
Ack n ow led gm en t. This research was financially
supported by the Institut National de la Recherche
Me´dicale (INSERM). We are indebted to U-322 mem-
bers for technical assistance in antiviral activity evalu-
ation and to Dr. T. Williamson for help with the
manuscript. We thank M. Meyer and Dr. G. Pepe for
molecular modeling studies. Also, we give a special
thanks to Professor Roussel from Universite´ Aix-
Marseille III ENSSPICAM (Marseille) for his precious
help in chiral separation.
Su p p or tin g In for m a tion Ava ila ble: Experimental pro-
cedure for the syntheses of compounds 2-10, along with some
analytical data, and procedures for diastereoisomer separation,
antiviral activity measurements, and HIV-1 protease inhibi-
(22) Seebach, D.; Bossler, H.; Grunder, H.; Shoda, S.; Wenger, R.
C-Alkylation of Peptides through Polylithiated and LiCl-Solvated
Derivatives Containing Sarcosine Li-Enolate Units. Helv. Chim.
Acta 1991, 74, 197-224.